ﻻ يوجد ملخص باللغة العربية
Photometric galaxy surveys constitute a powerful cosmological probe but rely on the accurate characterization of their redshift distributions using only broadband imaging, and can be very sensitive to incomplete or biased priors used for redshift calibration. Sanchez & Bernstein (2019) presented a hierarchical Bayesian model which estimates those from the robust combination of prior information, photometry of single galaxies and the information contained in the galaxy clustering against a well-characterized tracer population. In this work, we extend the method so that it can be applied to real data, developing some necessary new extensions to it, especially in the treatment of galaxy clustering information, and we test it on realistic simulations. After marginalizing over the mapping between the clustering estimator and the actual density distribution of the sample galaxies, and using prior information from a small patch of the survey, we find the incorporation of clustering information with photo-$z$s to tighten the redshift posteriors, and to overcome biases in the prior that mimic those happening in spectroscopic samples. The method presented here uses all the information at hand to reduce prior biases and incompleteness. Even in cases where we artificially bias the spectroscopic sample to induce a shift in mean redshift of $Delta bar z approx 0.05,$ the final biases in the posterior are $Delta bar z lesssim0.003.$ This robustness to flaws in the redshift prior or training samples would constitute a milestone for the control of redshift systematic uncertainties in future weak lensing analyses.
We implement a model for the two-point statistics of biased tracers that combines dark matter dynamics from $N$-body simulations with an analytic Lagrangian bias expansion. Using Aemulus, a suite of $N$-body simulations built for emulation of cosmolo
Accurately characterizing the redshift distributions of galaxies is essential for analysing deep photometric surveys and testing cosmological models. We present a technique to simultaneously infer redshift distributions and individual redshifts from
In the past few years, approximate Bayesian Neural Networks (BNNs) have demonstrated the ability to produce statistically consistent posteriors on a wide range of inference problems at unprecedented speed and scale. However, any disconnect between tr
We present a large-scale Bayesian inference framework to constrain cosmological parameters using galaxy redshift surveys, via an application of the Alcock-Paczynski (AP) test. Our physical model of the non-linearly evolved density field, as probed by
Large redshift surveys of galaxies and clusters are providing the first opportunities to search for distortions in the observed pattern of large-scale structure due to such effects as gravitational redshift. We focus on non-linear scales and apply a