ترغب بنشر مسار تعليمي؟ اضغط هنا

Circumbinary discs around merging stellar-mass black holes

85   0   0.0 ( 0 )
 نشر من قبل Rebecca Martin
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A circumbinary disc around a pair of merging stellar-mass black holes may be shocked and heated during the recoil of the merged hole, causing a near-simultaneous electromagnetic counterpart to the gravitational wave event. The shocks occur around the recoil radius, where the disc orbital velocity is equal to the recoil velocity. The amount of mass present near this radius at the time of the merger is critical in determining how much radiation is released. We explore the evolution of a circumbinary disc in two limits. First, we consider an accretion disc that feels no torque from the binary. The disc does not survive until the merger unless there is a dead zone, a region of low turbulence. Even with the dead zone, the surface density in this case may be small. Second, we consider a disc that feels a strong binary torque that prevents accretion on to the binary. In this case there is significantly more mass in regions of interest at the time of the merger. A dead zone in this disc increases the mass close to the recoil radius. For typical binary-disc parameters we expect accretion to be significantly slowed by the resonant torque from the binary, and for a dead zone to be present. We conclude that provided significant mass orbits the binary after the formation of the black hole binary and that the radiation produced in recoil shocks can escape the flow efficiently, there is likely to be an observable electromagnetic signal from black hole binary mergers.



قيم البحث

اقرأ أيضاً

163 - Ilya Mandel , Alison Farmer 2018
The LIGO and Virgo detectors have recently directly observed gravitational waves from several mergers of pairs of stellar-mass black holes, as well as from one merging pair of neutron stars. These observations raise the hope that compact object merge rs could be used as a probe of stellar and binary evolution, and perhaps of stellar dynamics. This colloquium-style article summarizes the existing observations, describes theoretical predictions for formation channels of merging stellar-mass black-hole binaries along with their rates and observable properties, and presents some of the prospects for gravitational-wave astronomy.
The merger rate of stellar-mass black hole binaries (sBHBs) inferred by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) suggests the need for an efficient source of sBHB formation. Active galactic nucleus (AGN) disks are a pro mising location for the formation of these sBHBs, as well as binaries of other compact objects, because of powerful torques exerted by the gas disk. These gas torques cause orbiting compact objects to migrate towards regions in the disk where inward and outward torques cancel, known as migration traps. We simulate the migration of stellar mass black holes in an example of a model AGN disk, using an augmented N-body code that includes analytic approximations to migration torques, stochastic gravitational forces exerted by turbulent density fluctuations in the disk, and inclination and eccentricity dampening produced by passages through the gas disk, in addition to the standard gravitational forces between objects. We find that sBHBs form rapidly in our model disk as stellar-mass black holes migrate towards the migration trap. These sBHBs are likely to subsequently merge on short time-scales. The process continues, leading to the build-up of a population of over-massive stellar-mass black holes. The formation of sBHBs in AGN disks could contribute significantly to the sBHB merger rate inferred by LIGO.
Ultra-luminous X-ray sources (ULXs) have been puzzling us with a debate whether they consist of an intermediate mass black hole or super-Eddington accretion by a stellar mass black hole. Here we suggest that in the presence of large scale strong magn etic fields and non-negligible vertical motion, the luminosity of ULXs, particularly in their hard states, can be explained with sub-Eddington accretion by stellar mass black holes. In this framework of 2.5D magnetized advective accretion flows, magnetic tension plays the role of transporting matter (equivalent to viscous shear via turbulent viscosity) and we neither require to invoke an intermediate mass black hole nor super-Eddington accretion. Our model explains the sources, like, NGC 1365 X1/X2, M82 X42.3+59, M99 X1 etc. which are in their hard power-law dominated states.
The masses, rates, and spins of merging stellar-mass binary black holes (BBHs) detected by aLIGO and Virgo provide challenges to traditional BBH formation and merger scenarios. An active galactic nucleus (AGN) disk provides a promising additional mer ger channel, because of the powerful influence of the gas that drives orbital evolution, makes encounters dissipative, and leads to migration. Previous work showed that stellar mass black holes (sBHs) in an AGN disk migrate to regions of the disk, known as migration traps, where positive and negative gas torques cancel out, leading to frequent BBH formation. Here we build on that work by simulating the evolution of additional sBHs that enter the inner disk by either migration or inclination reduction. We also examine whether the BBHs formed in our models have retrograde or prograde orbits around their centers of mass with respect to the disk, determining the orientation, relative to the disk, of the spin of the merged BBHs. Orbiters entering the inner disk form BBHs with sBHs on resonant orbits near the migration trap. When these sBHs reach ~80 Msun, they form BBHs with sBHs in the migration trap, which over 10 Myr reach ~1000 Msun. We find 68% of the BBHs in our simulation orbit in the retrograde direction, which implies BBHs in our merger channel will have small dimensionless aligned spins, chi_eff. Overall, our models produce BBHs that resemble both the majority of BBH mergers detected thus far (0.66 to 120 Gpc^-3 yr^-1 ) and two recent unusual detections, GW190412 (~0.3 Gpc^-3 yr^-1 ) and GW190521 (~0.1 Gpc^-3 yr^-1 ).
132 - J. M. Miller 2009
If a black hole has a low spin value, it must double its mass to reach a high spin parameter. Although this is easily accomplished through mergers or accretion in the case of supermassive black holes in galactic centers, it is impossible for stellar- mass black holes in X-ray binaries. Thus, the spin distribution of stellar-mass black holes is almost pristine, largely reflective of the angular momentum imparted at the time of their creation. This fact can help provide insights on two fundamental questions: What is the nature of the central engine in supernovae and gamma-ray bursts? and What was the spin distribution of the first black holes in the universe?
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا