ﻻ يوجد ملخص باللغة العربية
The LIGO and Virgo detectors have recently directly observed gravitational waves from several mergers of pairs of stellar-mass black holes, as well as from one merging pair of neutron stars. These observations raise the hope that compact object mergers could be used as a probe of stellar and binary evolution, and perhaps of stellar dynamics. This colloquium-style article summarizes the existing observations, describes theoretical predictions for formation channels of merging stellar-mass black-hole binaries along with their rates and observable properties, and presents some of the prospects for gravitational-wave astronomy.
A circumbinary disc around a pair of merging stellar-mass black holes may be shocked and heated during the recoil of the merged hole, causing a near-simultaneous electromagnetic counterpart to the gravitational wave event. The shocks occur around the
If a black hole has a low spin value, it must double its mass to reach a high spin parameter. Although this is easily accomplished through mergers or accretion in the case of supermassive black holes in galactic centers, it is impossible for stellar-
Off-center stellar tidal disruption flares have been suggested to be a powerful probe of recoiling supermassive black holes (SMBHs) out of galactic centers due to anisotropic gravitational wave radiations. However, off-center tidal flares can also be
Binary black hole mergers are of great interest to the astrophysics community, not least because of their promise to test general relativity in the highly dynamic, strong field regime. Detections of gravitational waves from these sources by LIGO and
The current gravitational-wave localization methods rely mainly on sources with electromagnetic counterparts. Unfortunately, a binary black hole does not emit light. Due to this, it is generally not possible to localize these objects precisely. Howev