ﻻ يوجد ملخص باللغة العربية
Ultra-luminous X-ray sources (ULXs) have been puzzling us with a debate whether they consist of an intermediate mass black hole or super-Eddington accretion by a stellar mass black hole. Here we suggest that in the presence of large scale strong magnetic fields and non-negligible vertical motion, the luminosity of ULXs, particularly in their hard states, can be explained with sub-Eddington accretion by stellar mass black holes. In this framework of 2.5D magnetized advective accretion flows, magnetic tension plays the role of transporting matter (equivalent to viscous shear via turbulent viscosity) and we neither require to invoke an intermediate mass black hole nor super-Eddington accretion. Our model explains the sources, like, NGC 1365 X1/X2, M82 X42.3+59, M99 X1 etc. which are in their hard power-law dominated states.
Electron-positron pair creation near sub-Eddington accretion rate black holes is believed to be dominated by the Breit-Wheeler process (photon-photon collisions). The interacting high energy photons are produced when unscreened electric fields accele
We use global three dimensional radiation magneto-hydrodynamical simulations to study accretion disks onto a $5times 10^8M_{odot}$ black hole with accretion rates varying from $sim 250L_{Edd}/c^2$ to $1500 L_{Edd}/c^2$. We form the disks with torus c
We use global three dimensional radiation magneto-hydrodynamic simulations to study the properties of inner regions of accretion disks around a 5times 10^8 solar mass black hole with mass accretion rates reaching 7% and 20% of the Eddington value. Th
An accretion flow around a black hole has a saddle type sonic point just outside the event horizon to guarantee that the flow enters the black hole supersonically. This feature exclusively present in strong gravity limit makes its marks in every obse
We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete se