ﻻ يوجد ملخص باللغة العربية
In this paper, we consider an uplink heterogeneous cloud radio access network (H-CRAN), where a macro base station (BS) coexists with many remote radio heads (RRHs). For cost-savings, only the BS is connected to the baseband unit (BBU) pool via fiber links. The RRHs, however, are associated with the BBU pool through wireless fronthaul links, which share the spectrum resource with radio access networks. Due to the limited capacity of fronthaul, the compress-and-forward scheme is employed, such as point-to-point compression or Wyner-Ziv coding. Different decoding strategies are also considered. This work aims to maximize the uplink ergodic sum-rate (SR) by jointly optimizing quantization noise matrix and bandwidth allocation between radio access networks and fronthaul links, which is a mixed time-scale issue. To reduce computational complexity and communication overhead, we introduce an approximation problem of the joint optimization problem based on large-dimensional random matrix theory, which is a slow time-scale issue because it only depends on statistical channel information. Finally, an algorithm based on Dinkelbachs algorithm is proposed to find the optimal solution to the approximate problem. In summary, this work provides an economic solution to the challenge of constrained fronthaul capacity, and also provides a framework with less computational complexity to study how bandwidth allocation and fronthaul compression can affect the SR maximization problem.
In cloud radio access networks (C-RANs), the baseband units and radio units of base stations are separated, which requires high-capacity fronthaul links connecting both parts. In this paper, we consider the delay-aware fronthaul allocation problem fo
The cloud radio access network (C-RAN) is a promising network architecture for future mobile communications, and one practical hurdle for its large scale implementation is the stringent requirement of high capacity and low latency fronthaul connectin
In this paper, energy efficient resource allocation is considered for an uplink hybrid system, where non-orthogonal multiple access (NOMA) is integrated into orthogonal multiple access (OMA). To ensure the quality of service for the users, a minimum
In this paper, the problem of unmanned aerial vehicle (UAV) deployment, power allocation, and bandwidth allocation is investigated for a UAV-assisted wireless system operating at terahertz (THz) frequencies. In the studied model, one UAV can service
Joint user selection (US) and vector precoding (US-VP) is proposed for multiuser multiple-input multiple-output (MU-MIMO) downlink. The main difference between joint US-VP and conventional US is that US depends on data symbols for joint US-VP, wherea