ترغب بنشر مسار تعليمي؟ اضغط هنا

Delay-Aware Uplink Fronthaul Allocation in Cloud Radio Access Networks

161   0   0.0 ( 0 )
 نشر من قبل Wei Wang
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In cloud radio access networks (C-RANs), the baseband units and radio units of base stations are separated, which requires high-capacity fronthaul links connecting both parts. In this paper, we consider the delay-aware fronthaul allocation problem for C-RANs. The stochastic optimization problem is formulated as an infinite horizon average cost Markov decision process. To deal with the curse of dimensionality, we derive a closed-form approximate priority function and the associated error bound using perturbation analysis. Based on the closed-form approximate priority function, we propose a low-complexity delay-aware fronthaul allocation algorithm solving the per-stage optimization problem. The proposed solution is further shown to be asymptotically optimal for sufficiently small cross link path gains. Finally, the proposed fronthaul allocation algorithm is compared with various baselines through simulations, and it is shown that significant performance gain can be achieved.



قيم البحث

اقرأ أيضاً

In this paper, we investigate the downlink secure beamforming (BF) design problem of cloud radio access networks (C-RANs) relying on multicast fronthaul, where millimeter-wave and microwave carriers are used for the access links and fronthaul links, respectively. The base stations (BSs) jointly serve users through cooperating hybrid analog/digital BF. We first develop an analog BF for cooperating BSs. On this basis, we formulate a secrecy rate maximization (SRM) problem subject both to a realistic limited fronthaul capacity and to the total BS transmit power constraint. Due to the intractability of the non-convex problem formulated, advanced convex approximated techniques, constrained concave convex procedures and semi-definite programming (SDP) relaxation are applied to transform it into a convex one. Subsequently, an iterative algorithm of jointly optimizing multicast BF, cooperative digital BF and the artificial noise (AN) covariance is proposed. Next, we construct the solution of the original problem by exploiting both the primal and the dual optimal solution of the SDP-relaxed problem. Furthermore, a per-BS transmit power constraint is considered, necessitating the reformulation of the SRM problem, which can be solved by an efficient iterative algorithm. We then eliminate the idealized simplifying assumption of having perfect channel state information (CSI) for the eavesdropper links and invoke realistic imperfect CSI. Furthermore, a worst-case SRM problem is investigated. Finally, by combining the so-called $mathcal{S}$-Procedure and convex approximated techniques, we design an efficient iterative algorithm to solve it. Simulation results are presented to evaluate the secrecy rate and demonstrate the effectiveness of the proposed algorithms.
Uplink and downlink cloud radio access networks are modeled as two-hop K-user L-relay networks, whereby small base-stations act as relays for end-to-end communications and are connected to a central processor via orthogonal fronthaul links of finite capacities. Simplifi
The gains afforded by cloud radio access network (C-RAN) in terms of savings in capital and operating expenses, flexibility, interference management and network densification rely on the presence of high-capacity low-latency fronthaul connectivity be tween remote radio heads (RRHs) and baseband unit (BBU). In light of the non-uniform and limited availability of fiber optics cables, the bandwidth constraints on the fronthaul network call, on the one hand, for the development of advanced baseband compression strategies and, on the other hand, for a closer investigation of the optimal functional split between RRHs and BBU. In this chapter, after a brief introduction to signal processing challenges in C-RAN, this optimal function split is studied at the physical (PHY) layer as it pertains to two key baseband signal processing steps, namely channel estimation in the uplink and channel encoding/ linear precoding in the downlink. Joint optimization of baseband fronthaul compression and of baseband signal processing is tackled under different PHY functional splits, whereby uplink channel estimation and downlink channel encoding/ linear precoding are carried out either at the RRHs or at the BBU. The analysis, based on information-theoretical arguments, and numerical results yields insight into the configurations of network architecture and fronthaul capacities in which different functional splits are advantageous. The treatment also emphasizes the versatility of deterministic and stochastic successive convex approximation strategies for the optimization of C-RANs.
Rate-splitting multiple access (RSMA) has been recognized as a promising physical layer strategy for 6G. Motivated by ever increasing popularity of cache-enabled content delivery in wireless communications, this paper proposes an innovative multigrou p multicast transmission scheme based on RSMA for cache-aided cloud-radio access networks (C-RAN). Our proposed scheme not only exploits the properties of content-centric communications and local caching at the base stations (BSs), but also incorporates RSMA to better manage interference in multigroup multicast transmission with statistical channel state information (CSI) known at the central processor (CP) and the BSs. At the RSMA-enabled cloud CP, the message of each multicast group is split into a private and a common part with the former private part being decoded by all users in the respective group and the latter common part being decoded by multiple users from other multicast groups. Common message decoding is done for the purpose of mitigating the interference. In this work, we jointly optimize the clustering of BSs and the precoding with the aim of maximizing the minimum rate among all multicast groups to guarantee fairness serving all groups. The problem is a mixed-integer non-linear stochastic program (MINLSP), which is solved by a practical algorithm we proposed including a heuristic clustering algorithm for assigning a set of BSs to serve each user followed by an efficient iterative algorithm that combines the sample average approximation (SAA) and weighted minimum mean square error (WMMSE) to solve the stochastic non-convex sub-problem of precoder design. Numerical results show the explicit max-min rate gain of our proposed transmission scheme compared to the state-of-the-art trivial interference processing methods. Therefore, we conclude that RSMA is a promising technique for cache-aided C-RAN.
Non-orthogonal multiple access (NOMA) is envisioned to be one of the most beneficial technologies for next generation wireless networks due to its enhanced performance compared to other conventional radio access techniques. Although the principle of NOMA allows multiple users to use the same frequency resource, due to decoding complication, information of users in practical systems cannot be decoded successfully if many of them use the same channel. Consequently, assigned spectrum of a system needs to be split into multiple subchannels in order to multiplex that among many users. Uplink resource allocation for such systems is more complicated compared to the downlink ones due to the individual users power constraints and discrete nature of subchannel assignment. In this paper, we propose an uplink subchannel and power allocation scheme for such systems. Due to the NP-hard and non-convex nature of the problem, the complete solution, that optimizes both subchannel assignment and power allocation jointly, is intractable. Consequently, we solve the problem in two steps. First, based on the assumption that the maximal power level of a user is subdivided equally among its allocated subchannels, we apply many-to-many matching model to solve the subchannel-user mapping problem. Then, in order to enhance the performance of the system further, we apply iterative water-filling and geometric programming two power allocation techniques to allocate power in each allocated subchannel-user slot optimally. Extensive simulation has been conducted to verify the effectiveness of the proposed scheme. The results demonstrate that the proposed scheme always outperforms all existing works in this context under all possible scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا