ﻻ يوجد ملخص باللغة العربية
The cloud radio access network (C-RAN) is a promising network architecture for future mobile communications, and one practical hurdle for its large scale implementation is the stringent requirement of high capacity and low latency fronthaul connecting the distributed remote radio heads (RRH) to the centralized baseband pools (BBUs) in the C-RAN. To improve the scalability of C-RAN networks, it is very important to take the fronthaul loading into consideration in the signal detection, and it is very desirable to reduce the fronthaul loading in C-RAN systems. In this paper, we consider uplink C-RAN systems and we propose a distributed fronthaul compression scheme at the distributed RRHs and a joint recovery algorithm at the BBUs by deploying the techniques of distributed compressive sensing (CS). Different from conventional distributed CS, the CS problem in C-RAN system needs to incorporate the underlying effect of multi-access fading for the end-to-end recovery of the transmitted signals from the users. We analyze the performance of the proposed end-to-end signal recovery algorithm and we show that the aggregate measurement matrix in C-RAN systems, which contains both the distributed fronthaul compression and multiaccess fading, can still satisfy the restricted isometry property with high probability. Based on these results, we derive tradeoff results between the uplink capacity and the fronthaul loading in C-RAN systems.
The Cloud-Radio Access Network (C-RAN) cellular architecture relies on the transfer of complex baseband signals to and from a central unit (CU) over digital fronthaul links to enable the virtualization of the baseband processing functionalities of di
In this paper, we consider an uplink heterogeneous cloud radio access network (H-CRAN), where a macro base station (BS) coexists with many remote radio heads (RRHs). For cost-savings, only the BS is connected to the baseband unit (BBU) pool via fiber
In this paper, we put forth a new joint sparse recovery algorithm called signal space matching pursuit (SSMP). The key idea of the proposed SSMP algorithm is to sequentially investigate the support of jointly sparse vectors to minimize the subspace d
Reconfigurable Intelligent Surfaces (RISs) have been recently considered as an energy-efficient solution for future wireless networks. Their dynamic and low-power configuration enables coverage extension, massive connectivity, and low-latency communi
In cloud radio access networks (C-RANs), the baseband units and radio units of base stations are separated, which requires high-capacity fronthaul links connecting both parts. In this paper, we consider the delay-aware fronthaul allocation problem fo