ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributed Fronthaul Compression and Joint Signal Recovery in Cloud-RAN

195   0   0.0 ( 0 )
 نشر من قبل Xiongbin Rao
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The cloud radio access network (C-RAN) is a promising network architecture for future mobile communications, and one practical hurdle for its large scale implementation is the stringent requirement of high capacity and low latency fronthaul connecting the distributed remote radio heads (RRH) to the centralized baseband pools (BBUs) in the C-RAN. To improve the scalability of C-RAN networks, it is very important to take the fronthaul loading into consideration in the signal detection, and it is very desirable to reduce the fronthaul loading in C-RAN systems. In this paper, we consider uplink C-RAN systems and we propose a distributed fronthaul compression scheme at the distributed RRHs and a joint recovery algorithm at the BBUs by deploying the techniques of distributed compressive sensing (CS). Different from conventional distributed CS, the CS problem in C-RAN system needs to incorporate the underlying effect of multi-access fading for the end-to-end recovery of the transmitted signals from the users. We analyze the performance of the proposed end-to-end signal recovery algorithm and we show that the aggregate measurement matrix in C-RAN systems, which contains both the distributed fronthaul compression and multiaccess fading, can still satisfy the restricted isometry property with high probability. Based on these results, we derive tradeoff results between the uplink capacity and the fronthaul loading in C-RAN systems.



قيم البحث

اقرأ أيضاً

The Cloud-Radio Access Network (C-RAN) cellular architecture relies on the transfer of complex baseband signals to and from a central unit (CU) over digital fronthaul links to enable the virtualization of the baseband processing functionalities of di stributed radio units (RUs). The standard design of digital fronthauling is based on either scalar quantization or on more sophisticated point to-point compression techniques operating on baseband signals. Motivated by network-information theoretic results, techniques for fronthaul quantization and compression that improve over point-to-point solutions by allowing for joint processing across multiple fronthaul links at the CU have been recently proposed for both the uplink and the downlink. For the downlink, a form of joint compression, known in network information theory as multivariate compression, was shown to be advantageous under a non-constructive asymptotic information-theoretic framework. In this paper, instead, the design of a practical symbol-by-symbol fronthaul quantization algorithm that implements the idea of multivariate compression is investigated for the C-RAN downlink. As compared to current standards, the proposed multivariate quantization (MQ) only requires changes in the CU processing while no modification is needed at the RUs. The algorithm is extended to enable the joint optimization of downlink precoding and quantization, reduced-complexity MQ via successive block quantization, and variable-length compression. Numerical results, which include performance evaluations over standard cellular models, demonstrate the advantages of MQ and the merits of a joint optimization with precoding.
In this paper, we consider an uplink heterogeneous cloud radio access network (H-CRAN), where a macro base station (BS) coexists with many remote radio heads (RRHs). For cost-savings, only the BS is connected to the baseband unit (BBU) pool via fiber links. The RRHs, however, are associated with the BBU pool through wireless fronthaul links, which share the spectrum resource with radio access networks. Due to the limited capacity of fronthaul, the compress-and-forward scheme is employed, such as point-to-point compression or Wyner-Ziv coding. Different decoding strategies are also considered. This work aims to maximize the uplink ergodic sum-rate (SR) by jointly optimizing quantization noise matrix and bandwidth allocation between radio access networks and fronthaul links, which is a mixed time-scale issue. To reduce computational complexity and communication overhead, we introduce an approximation problem of the joint optimization problem based on large-dimensional random matrix theory, which is a slow time-scale issue because it only depends on statistical channel information. Finally, an algorithm based on Dinkelbachs algorithm is proposed to find the optimal solution to the approximate problem. In summary, this work provides an economic solution to the challenge of constrained fronthaul capacity, and also provides a framework with less computational complexity to study how bandwidth allocation and fronthaul compression can affect the SR maximization problem.
In this paper, we put forth a new joint sparse recovery algorithm called signal space matching pursuit (SSMP). The key idea of the proposed SSMP algorithm is to sequentially investigate the support of jointly sparse vectors to minimize the subspace d istance to the residual space. Our performance guarantee analysis indicates that SSMP accurately reconstructs any row $K$-sparse matrix of rank $r$ in the full row rank scenario if the sampling matrix $mathbf{A}$ satisfies $text{krank}(mathbf{A}) ge K+1$, which meets the fundamental minimum requirement on $mathbf{A}$ to ensure exact recovery. We also show that SSMP guarantees exact reconstruction in at most $K-r+lceil frac{r}{L} rceil$ iterations, provided that $mathbf{A}$ satisfies the restricted isometry property (RIP) of order $L(K-r)+r+1$ with $$delta_{L(K-r)+r+1} < max left { frac{sqrt{r}}{sqrt{K+frac{r}{4}}+sqrt{frac{r}{4}}}, frac{sqrt{L}}{sqrt{K}+1.15 sqrt{L}} right },$$ where $L$ is the number of indices chosen in each iteration. This implies that the requirement on the RIP constant becomes less restrictive when $r$ increases. Such behavior seems to be natural but has not been reported for most of conventional methods. We further show that if $r=1$, then by running more than $K$ iterations, the performance guarantee of SSMP can be improved to $delta_{lfloor 7.8K rfloor} le 0.155$. In addition, we show that under a suitable RIP condition, the reconstruction error of SSMP is upper bounded by a constant multiple of the noise power, which demonstrates the stability of SSMP under measurement noise. Finally, from extensive numerical experiments, we show that SSMP outperforms conventional joint sparse recovery algorithms both in noiseless and noisy scenarios.
Reconfigurable Intelligent Surfaces (RISs) have been recently considered as an energy-efficient solution for future wireless networks. Their dynamic and low-power configuration enables coverage extension, massive connectivity, and low-latency communi cations. Channel estimation and signal recovery in RISbased systems are among the most critical technical challenges, due to the large number of unknown variables referring to the RIS unit elements and the transmitted signals. In this paper, we focus on the downlink of a RIS-assisted multi-user Multiple Input Single Output (MISO) communication system and present a joint channel estimation and signal recovery scheme based on the PARAllel FACtor (PARAFAC) decomposition. This decomposition unfolds the cascaded channel model and facilitates signal recovery using the Bilinear Generalized Approximate Message Passing (BiG-AMP) algorithm. The proposed method includes an alternating least squares algorithm to iteratively estimate the equivalent matrix, which consists of the transmitted signals and the channels between the base station and RIS, as well as the channels between the RIS and the multiple users. Our selective simulation results show that the proposed scheme outperforms a benchmark scheme that uses genie-aided information knowledge. We also provide insights on the impact of different RIS parameter settings on the proposed scheme.
In cloud radio access networks (C-RANs), the baseband units and radio units of base stations are separated, which requires high-capacity fronthaul links connecting both parts. In this paper, we consider the delay-aware fronthaul allocation problem fo r C-RANs. The stochastic optimization problem is formulated as an infinite horizon average cost Markov decision process. To deal with the curse of dimensionality, we derive a closed-form approximate priority function and the associated error bound using perturbation analysis. Based on the closed-form approximate priority function, we propose a low-complexity delay-aware fronthaul allocation algorithm solving the per-stage optimization problem. The proposed solution is further shown to be asymptotically optimal for sufficiently small cross link path gains. Finally, the proposed fronthaul allocation algorithm is compared with various baselines through simulations, and it is shown that significant performance gain can be achieved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا