ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterizing the atmosphere of Proxima b with a space-based mid-infrared nulling interferometer

462   0   0.0 ( 0 )
 نشر من قبل Denis Defr\\`ere
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Proxima b is our nearest potentially rocky exoplanet and represents a formidable opportunity for exoplanet science and possibly astrobiology. With an angular separation of only 35~mas (or 0.05~AU) from its host star, Proxima b is however hardly observable with current imaging telescopes and future space-based coronagraphs. One way to separate the photons of the planet from those of its host star is to use an interferometer that can easily resolve such spatial scales. In addition, its proximity to Earth and its favorable contrast ratio compared with its host M dwarf (approximately 10$^{-5}$ at 10 microns) makes it an ideal target for a space-based nulling interferometer with relatively small apertures. In this paper, we present the motivation for observing this planet in the mid-infrared (5-20 microns) and the corresponding technological challenges. Then, we describe the concept of a space-based infrared interferometer with relatively small ($<$1m in diameter) apertures that can measure key details of Proxima b, such as its size, temperature, climate structure, as well as the presence of important atmospheric molecules such as H$_2$O, CO$_2$, O$_3$, and CH$_4$. Finally, we illustrate the concept by showing realistic observations using synthetic spectra of Proxima b computed with coupled climate chemistry models.



قيم البحث

اقرأ أيضاً

91 - Sascha P. Quanz 2018
One of the long-term goals of exoplanet science is the (atmospheric) characterization of a large sample (>100) of terrestrial planets to assess their potential habitability and overall diversity. Hence, it is crucial to quantitatively evaluate and co mpare the scientific return of various mission concepts. Here we discuss the exoplanet yield of a space-based mid-infrared (MIR) nulling interferometer. We use Monte-Carlo simulations, based on the observed planet population statistics from the Kepler mission, to quantify the number and properties of detectable exoplanets (incl. potentially habitable planets) and we compare the results to those for a large aperture optical/NIR space telescope. We investigate how changes in the underlying technical assumptions (sensitivity and spatial resolution) impact the results and discuss scientific aspects that influence the choice for the wavelength coverage and spectral resolution. Finally, we discuss the advantages of detecting exoplanets at MIR wavelengths, summarize the current status of some key technologies, and describe what is needed in terms of further technology development to pave the road for a space-based MIR nulling interferometer for exoplanet science.
Vortex Fiber Nulling (VFN) is an interferometric method for suppressing starlight to detect and spectroscopically characterize exoplanets. It relies on a vortex phase mask and single-mode fiber to reject starlight while simultaneously coupling up to 20% of the planet light at separations of $lesssim1lambda/D$, thereby enabling spectroscopic characterization of a large population of RV and transit-detected planets, among others, that are inaccessible to conventional coronagraphs. VFN has been demonstrated in the lab at visible wavelengths and here we present the latest results of these experiments. This includes polychromatic nulls of $5times10^{-4}$ in 10% bandwidth light centered around 790 nm. An upgraded testbed has been designed and is being built in the lab now; we also present a status update on that work here. Finally, we present preliminary K-band (2 $mu$m) fiber nulling results with the infrared mask that will be used on-sky as part of a VFN mode for the Keck Planet Imager and Characterizer Instrument in 2021.
131 - A. M. Glauser 2013
Transit-spectroscopy of exoplanets is one of the key observational techniques to characterize the extrasolar planet and its atmosphere. The observational challenges of these measurements require dedicated instrumentation and only the space environmen t allows an undisturbed access to earth-like atmospheric features such as water or carbon-dioxide. Therefore, several exoplanet-specific space missions are currently being studied. One of them is EChO, the Exoplanet Characterization Observatory, which is part of ESAs Cosmic Vision 2015-2025 program, and which is one of four candidates for the M3 launch slot in 2024. In this paper we present the results of our assessment study of the EChO spectrometer, the only science instrument onboard this spacecraft. The instrument is a multi-channel all-reflective dispersive spectrometer, covering the wavelength range from 400 nm to 16 microns simultaneously with a moderately low spectral resolution. We illustrate how the key technical challenge of the EChO mission - the high photometric stability - influences the choice of spectrometer concept and drives fundamentally the instrument design. First performance evaluations underline the fitness of the elaborated design solution for the needs of the EChO mission.
The future of exoplanet detection lies in the mid-infrared (MIR). The MIR region contains the blackbody peak of both hot and habitable zone exoplanets, making the contrast between starlight and planet light less extreme. It is also the region where p rominent chemical signatures indicative of life exist, such as ozone at 9.7 microns. At a wavelength of 4 microns the difference in emission between an Earth-like planet and a star like our own is 80 dB. However a jovian planet, at the same separation exhibits 60 dB of contrast, or only 20 dB if it is hot due to its formation energy or being close to its host star. A two dimensional nulling interferometer, made with chalcogenide glass, has been measured to produce a null of 20 dB, limited by scattered light. Measures to increase the null depth to the theoretical limit of 60 dB are discussed.
Integrated optic beam combiners offer many advantages over conventional bulk optic implementations for astronomical imaging. To date, integrated optic beam combiners have only been demonstrated at operating wavelengths below 4 microns. Operation in m id-infrared wavelength region, however, is highly desirable. In this paper, a theoretical design technique based on three coupled waveguides is developed to achieve fully achromatic, broadband, polarization-insensitive, lossless beam combining. This design may make it possible to achieve the very deep broadband nulls needed for exoplanet searching.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا