ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterizing Exoplanets in the Visible and Infrared: A Spectrometer Concept for the EChO Space Mission

123   0   0.0 ( 0 )
 نشر من قبل Adrian Glauser
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. M. Glauser




اسأل ChatGPT حول البحث

Transit-spectroscopy of exoplanets is one of the key observational techniques to characterize the extrasolar planet and its atmosphere. The observational challenges of these measurements require dedicated instrumentation and only the space environment allows an undisturbed access to earth-like atmospheric features such as water or carbon-dioxide. Therefore, several exoplanet-specific space missions are currently being studied. One of them is EChO, the Exoplanet Characterization Observatory, which is part of ESAs Cosmic Vision 2015-2025 program, and which is one of four candidates for the M3 launch slot in 2024. In this paper we present the results of our assessment study of the EChO spectrometer, the only science instrument onboard this spacecraft. The instrument is a multi-channel all-reflective dispersive spectrometer, covering the wavelength range from 400 nm to 16 microns simultaneously with a moderately low spectral resolution. We illustrate how the key technical challenge of the EChO mission - the high photometric stability - influences the choice of spectrometer concept and drives fundamentally the instrument design. First performance evaluations underline the fitness of the elaborated design solution for the needs of the EChO mission.



قيم البحث

اقرأ أيضاً

The Origins Space Telescope (Origins) traces our cosmic history, from the formation of the first galaxies and the rise of metals to the development of habitable worlds and present-day life. Origins does this through exquisite sensitivity to infrared radiation from ions, atoms, molecules, dust, water vapor and ice, and observations of extra-solar planetary atmospheres, protoplanetary disks, and large-area extragalactic fields. Origins operates in the wavelength range 2.8 to 588 microns and is 1000 times more sensitive than its predecessors due to its large, cold (4.5 K) telescope and advanced instruments. Origins was one of four large missions studied by the community with support from NASA and industry in preparation for the 2020 Decadal Survey in Astrophysics. This is the final study report.
The OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) is a point spectrometer covering the spectral range of 0.4 to 4.3 microns (25,000-2300 cm-1). Its primary purpose is to map the surface composition of the asteroid Bennu, the target asteroid of the OSIRIS-REx asteroid sample return mission. The information it returns will help guide the selection of the sample site. It will also provide global context for the sample and high spatial resolution spectra that can be related to spatially unresolved terrestrial observations of asteroids. It is a compact, low-mass (17.8 kg), power efficient (8.8 W average), and robust instrument with the sensitivity needed to detect a 5% spectral absorption feature on a very dark surface (3% reflectance) in the inner solar system (0.89-1.35 AU). It, in combination with the other instruments on the OSIRIS-REx Mission, will provide an unprecedented view of an asteroids surface.
The Visible and Near Infrared (VNIR) is one of the modules of EChO, the Exoplanets Characterization Observatory proposed to ESA for an M-class mission. EChO is aimed to observe planets while transiting by their suns. Then the instrument had to be des igned to assure a high efficiency over the whole spectral range. In fact, it has to be able to observe stars with an apparent magnitude Mv= 9-12 and to see contrasts of the order of 10-4 - 10-5 necessary to reveal the characteristics of the atmospheres of the exoplanets under investigation. VNIR is a spectrometer in a cross-dispersed configuration, covering the 0.4-2.5 micron spectral range with a resolving power of about 330 and a field of view of 2 arcsec. It is functionally split into two channels respectively working in the 0.4-1 and 1.0-2.5 micron spectral ranges. Such a solution is imposed by the fact the light at short wavelengths has to be shared with the EChO Fine Guiding System (FGS) devoted to the pointing of the stars under observation. The spectrometer makes use of a HgCdTe detector of 512 by 512 pixels, 18 micron pitch and working at a temperature of 45K as the entire VNIR optical bench. The instrument has been interfaced to the telescope optics by two optical fibers, one per channel, to assure an easier coupling and an easier colocation of the instrument inside the EChO optical bench.
96 - L. Amati , P.T. OBrien , D. Gotz 2021
THESEUS, one of the two space mission concepts being studied by ESA as candidates for next M5 mission within its Comsic Vision programme, aims at fully exploiting Gamma-Ray Bursts (GRB) to solve key questions about the early Universe, as well as beco ming a cornerstone of multi-messenger and time-domain astrophysics. By investigating the first billion years of the Universe through high-redshift GRBs, THESEUS will shed light on the main open issues in modern cosmology, such as the population of primordial low mass and luminosity galaxies, sources and evolution of cosmic re-ionization, SFR and metallicity evolution up to the cosmic dawn and across Pop-III stars. At the same time, the mission will provide a substantial advancement of multi-messenger and time-domain astrophysics by enabling the identification, accurate localisation and study of electromagnetic counterparts to sources of gravitational waves and neutrinos, which will be routinely detected in the late 20s and early 30s by the second and third generation Gravitational Wave (GW) interferometers and future neutrino detectors, as well as of all kinds of GRBs and most classes of other X/gamma-ray transient sources. In all these cases, THESEUS will provide great synergies with future large observing facilities in the multi-messenger domain. A Guest Observer programme, comprising Target of Opportunity (ToO) observations, will expand the science return of the mission, to include, e.g., solar system minor bodies, exoplanets, and AGN.
461 - D. Defr`ere , A. Leger , O. Absil 2018
Proxima b is our nearest potentially rocky exoplanet and represents a formidable opportunity for exoplanet science and possibly astrobiology. With an angular separation of only 35~mas (or 0.05~AU) from its host star, Proxima b is however hardly obser vable with current imaging telescopes and future space-based coronagraphs. One way to separate the photons of the planet from those of its host star is to use an interferometer that can easily resolve such spatial scales. In addition, its proximity to Earth and its favorable contrast ratio compared with its host M dwarf (approximately 10$^{-5}$ at 10 microns) makes it an ideal target for a space-based nulling interferometer with relatively small apertures. In this paper, we present the motivation for observing this planet in the mid-infrared (5-20 microns) and the corresponding technological challenges. Then, we describe the concept of a space-based infrared interferometer with relatively small ($<$1m in diameter) apertures that can measure key details of Proxima b, such as its size, temperature, climate structure, as well as the presence of important atmospheric molecules such as H$_2$O, CO$_2$, O$_3$, and CH$_4$. Finally, we illustrate the concept by showing realistic observations using synthetic spectra of Proxima b computed with coupled climate chemistry models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا