ﻻ يوجد ملخص باللغة العربية
One of the long-term goals of exoplanet science is the (atmospheric) characterization of a large sample (>100) of terrestrial planets to assess their potential habitability and overall diversity. Hence, it is crucial to quantitatively evaluate and compare the scientific return of various mission concepts. Here we discuss the exoplanet yield of a space-based mid-infrared (MIR) nulling interferometer. We use Monte-Carlo simulations, based on the observed planet population statistics from the Kepler mission, to quantify the number and properties of detectable exoplanets (incl. potentially habitable planets) and we compare the results to those for a large aperture optical/NIR space telescope. We investigate how changes in the underlying technical assumptions (sensitivity and spatial resolution) impact the results and discuss scientific aspects that influence the choice for the wavelength coverage and spectral resolution. Finally, we discuss the advantages of detecting exoplanets at MIR wavelengths, summarize the current status of some key technologies, and describe what is needed in terms of further technology development to pave the road for a space-based MIR nulling interferometer for exoplanet science.
Proxima b is our nearest potentially rocky exoplanet and represents a formidable opportunity for exoplanet science and possibly astrobiology. With an angular separation of only 35~mas (or 0.05~AU) from its host star, Proxima b is however hardly obser
The future of exoplanet detection lies in the mid-infrared (MIR). The MIR region contains the blackbody peak of both hot and habitable zone exoplanets, making the contrast between starlight and planet light less extreme. It is also the region where p
One of the long-term goals of exoplanet science is the atmospheric characterization of dozens of small exoplanets in order to understand their diversity and search for habitable worlds and potential biosignatures. Achieving this goal requires a space
Space-borne nulling interferometers have long been considered as the best option for searching and characterizing extra-solar planets located in the habitable zone of their parent stars. Solutions for achieving deep starlight extinction are now numer
High spatial resolution is the key for the understanding various astrophysical phenomena. But even with the future E-ELT, single dish instruments are limited to a spatial resolution of about 4 mas in the visible. For the closest objects within our Ga