ﻻ يوجد ملخص باللغة العربية
We study the interface exciton at lateral type II heterojunctions of monolayer transition metal dichalcogenides (TMDs), where the electron and hole prefer to stay at complementary sides of the junction. We find that the 1D interface exciton has giant binding energy in the same order as 2D excitons in pristine monolayer TMDs although the effective radius (electron-hole seperation) of interface exciton is much larger than that of 2D excitons. The binding energy, exciton radius and optical dipole strongly depends on the band offset at the junction. The inter-valley coupling induced by the electron-hole Coulomb exchange interaction and the quantum confinement effect at interface of a closed triangular shape are also investigated. Small triangles realize 0D quantum dot confinement of excitons, and we find a transition from non-degenerate ground state to degenerate ones when the size of the triangle varies. Our findings may facilitate the implementation of the optoelectronic devices based on the lateral heterojunction structures in monolayer semiconductors.
The monolayer transition metal dichalcogenides are an emergent semiconductor platform exhibiting rich excitonic physics with coupled spin-valley degree of freedom and optical addressability. Here, we report a new series of low energy excitonic emissi
The emerging field of valleytronics aims to exploit the valley pseudospin of electrons residing near Bloch band extrema as an information carrier. Recent experiments demonstrating optical generation and manipulation of exciton valley coherence (the s
We calculate linear and nonlinear optical susceptibilities arising from the excitonic states of mono- layer MoS2 for in-plane light polarizations, using second-quantized bound and unbound exciton operators. Optical selection rules are critical for ob
Monolayer transition-metal dichalcogenides (TMDCs) have recently emerged as possible candidates for valleytronic applications, as the spin and valley pseudospin are directly coupled and stabilized by a large spin splitting. In these semiconducting ma
We study transport of indirect excitons in GaAs/AlGaAs coupled quantum wells in linear lattices created by laterally modulated gate voltage. The localization-delocalization transition (LDT) for transport across the lattice was observed with reducing