ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical nonlinearities of excitons in monolayer MoS2

73   0   0.0 ( 0 )
 نشر من قبل Daniel Soh
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate linear and nonlinear optical susceptibilities arising from the excitonic states of mono- layer MoS2 for in-plane light polarizations, using second-quantized bound and unbound exciton operators. Optical selection rules are critical for obtaining the susceptibilities. We derive the valley-chirality rule for the second harmonic generation in monolayer MoS2, and find that the third- harmonic process is efficient only for linearly polarized input light while the third-order two photon process (optical Kerr effect) is efficient for circularly polarized light using a higher order exciton state. The absence of linear absorption due to the band gap and the unusually strong two-photon third-order nonlinearity make the monolayer MoS2 excitonic structure a promising resource for coherent nonlinear photonics.



قيم البحث

اقرأ أيضاً

The strong Coulomb forces in monolayer transition metal dichalcogenides ensure that optical excitation of band electrons gives rise to Wannier-Mott excitonic states, each of which can be conceptualized as a composite of a Gaussian wavepacket correspo nding to center-of-mass motion and an orbital state corresponding to the motion of the electron and hole about the center-of-mass. Here, we show that at low temperature in monolayer MoS2, given quasi-localized excitons and consequently a significant inter-exciton spacing, the excitons undergo dipole-dipole interaction and annihilate one another in a manner analogous to Auger recombination. To construct our model, we assume that each exciton is localized in a region whose length is on the same scale as the excitonic diameter, thus causing the exciton to behave in a fermionic manner, while the distance between neighboring excitons is much larger than the exciton diameter. We construct the orbital ladder operators for each exciton and apply Fermis Golden Rule to derive the overall recombination rate as a function of exciton density.
269 - G.Wang , C.R. Zhu , B.L. Liu 2013
We use micro-Raman and photoluminescence (PL) spectroscopy at 300K to investigate the influence of uniaxial tensile strain on the vibrational and optoelectronic properties of monolayer and bilayer MoS2 on a flexible substrate. The initially degenerat e E^1_{2g} Raman mode is split into a doublet as a direct consequence of the strain applied to MoS2 through Van der Waals coupling at the sample-substrate interface. We observe a strong shift of the direct band gap of 48meV/(% of strain) for the monolayer and 46meV/% for the bilayer, whose indirect gap shifts by 86meV/%. We find a strong decrease of the PL polarization linked to optical valley initialization for both monolayer and bilayer samples, indicating that scattering to the spin-degenerate Gamma valley plays a key role.
Ensembles of indirect or interlayer excitons (IXs) are intriguing systems to explore classical and quantum phases of interacting bosonic ensembles. IXs are composite bosons that feature enlarged lifetimes due to the reduced overlap of the electron-ho le wave functions. We demonstrate electric Field control of indirect excitons in MoS2/WS2 hetero-bilayers embedded in a field effect structure with few-layer hexagonal boron nitrite as insulator and few-layer graphene as gate-electrodes. The different strength of the excitonic dipoles and a distinct temperature dependence identify the indirect excitons to stem from optical interband transitions with electrons and holes located in different valleys of the hetero-bilayer featuring highly hybridized electronic states. For the energetically lowest emission lines, we observe a field-dependent level anticrossing at low temperatures. We discuss this behavior in terms of coupling of electronic states from the two semiconducting monolayers resulting in spatially delocalized excitons of the hetero-bilayer behaving like an artificial van der Waals solid. Our results demonstrate the design of novel nano-quantum materials prepared from artificial van der Waals solids with the possibility to in-situ control their physical properties via external stimuli such as electric fields.
Excitons and trions (or exciton-polarons) in transition metal dichalcogenides (TMDs) are known to decay predominantly through intravalley transitions. Electron-hole recombination across different valleys can also play a significant role in the excito nic dynamics, but intervalley transitions are rarely observed in monolayer TMDs, because they violate the conservation of momentum. Here we reveal the intervalley recombination of dark excitons and trions through more than one path in monolayer WSe$_2$. We observe the intervalley dark excitons, which can recombine by the assistance of defect scattering or chiral-phonon emission. We also reveal that a trion can decay in two distinct paths - through intravalley or intervalley electron-hole recombination - into two different final valley states. Although these two paths are energy degenerate, we can distinguish them by lifting the valley degeneracy under a magnetic field. In addition, the intra- and inter-valley trion transitions are coupled to zone-center and zone-corner chiral phonons, respectively, to produce distinct phonon replicas. The observed multipath optical decays of dark excitons and trions provide much insight into the internal quantum structure of trions and the complex excitonic interactions with defects and chiral phonons in monolayer valley semiconductors.
Monolayer transition-metal dichalcogenides (TMDCs) have recently emerged as possible candidates for valleytronic applications, as the spin and valley pseudospin are directly coupled and stabilized by a large spin splitting. In these semiconducting ma terials, optically excited electron-hole pairs form tightly Coulomb-bound excitons with large binding energies. The selection rules for excitonic transitions allow for direct optical generation of a valley-polarized exciton population using resonant excitation. Here, we investigate the exciton valley dynamics in monolayers of three different TMDCs by means of time-resolved Kerr rotation at low temperatures. We observe pronounced differences in the valley dynamics of tungsten- and molybdenum-based TMDCs, which are directly related to the opposite order of the conduction-band spin splitting in these materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا