ﻻ يوجد ملخص باللغة العربية
Monolayer transition-metal dichalcogenides (TMDCs) have recently emerged as possible candidates for valleytronic applications, as the spin and valley pseudospin are directly coupled and stabilized by a large spin splitting. In these semiconducting materials, optically excited electron-hole pairs form tightly Coulomb-bound excitons with large binding energies. The selection rules for excitonic transitions allow for direct optical generation of a valley-polarized exciton population using resonant excitation. Here, we investigate the exciton valley dynamics in monolayers of three different TMDCs by means of time-resolved Kerr rotation at low temperatures. We observe pronounced differences in the valley dynamics of tungsten- and molybdenum-based TMDCs, which are directly related to the opposite order of the conduction-band spin splitting in these materials.
Transition metal dichalcogenides have been the primary materials of interest in the field of valleytronics for their potential in information storage, yet the limiting factor has been achieving long valley decoherence times. We explore the dynamics o
The dependence of the excitonic photoluminescence (PL) spectrum of monolayer transition metal dichalcogenides (TMDs) on the tilt angle of an applied magnetic field is studied. Starting from a four-band Hamiltonian we construct a theory which quantita
The valley degree of freedom is a sought-after quantum number in monolayer transition-metal dichalcogenides. Similar to optical spin orientation in semiconductors, the helicity of absorbed photons can be relayed to the valley (pseudospin) quantum num
In this work, we predict the emergence of the valley Edelstein Effect (VEE), which is an electric-field-induced spin polarization effect, in gated monolayer transition metal dichalcogenides (MTMDs). We found an unconventional valley-dependent respons
We theoretically investigate the chiral topological excitons emerging in the monolayer transition metal dichalcogenides, where a bulk energy gap of valley excitons is opened up by a position dependent external magnetic field. We find two emerging chi