ﻻ يوجد ملخص باللغة العربية
This work comprises a detailed theoretical and computational study of the boundary value problem for transversely isotropic linear elastic bodies. General conditions for well-posedness are derived in terms of the material parameters. The discrete form of the displacement problem is formulated for conforming finite element approximations. The error estimate reveals that anisotropy can play a role in minimizing or even eliminating locking behaviour, for moderate values of the ratio of Youngs moduli in the fibre and transverse directions. In addition to the standard conforming approximation an alternative formulation, involving under-integration of the volumetric and extensional terms in the weak formulation, is considered. The latter is equivalent to either a mixed or a perturbed Lagrangian formulation, analogously to the well-known situation for the volumetric term. A set of numerical examples confirms the locking-free behaviour in the near-incompressible limit of the standard formulation with moderate anisotropy, with locking behaviour being clearly evident in the case of near-inextensibility. On the other hand, under-integration of the extensional term leads to extensional locking-free behaviour, with convergence at superlinear rates.
In this paper, we study an adaptive finite element method for a class of a nonlinear eigenvalue problems that may be of nonconvex energy functional and consider its applications to quantum chemistry. We prove the convergence of adaptive finite elemen
This work proposes a new stabilized $P_1times P_0$ finite element method for solving the incompressible Navier--Stokes equations. The numerical scheme is based on a reduced Bernardi--Raugel element with statically condensed face bubbles and is pressu
Finite element approximations of minimal surface are not always precise. They can even sometimes completely collapse. In this paper, we provide a simple and inexpensive method, in terms of computational cost, to improve finite element approximations
A two-step preconditioned iterative method based on the Hermitian/Skew-Hermitian splitting is applied to the solution of nonsymmetric linear systems arising from the Finite Element approximation of convection-diffusion equations. The theoretical spec
We study finite element approximations of the nonhomogeneous Dirichlet problem for the fractional Laplacian. Our approach is based on weak imposition of the Dirichlet condition and incorporating a nonlocal analogous of the normal derivative as a Lagr