ﻻ يوجد ملخص باللغة العربية
Finite element approximations of minimal surface are not always precise. They can even sometimes completely collapse. In this paper, we provide a simple and inexpensive method, in terms of computational cost, to improve finite element approximations of minimal surfaces by local boundary mesh refinements. By highlighting the fact that a collapse is simply the limit case of a locally bad approximation, we show that our method can also be used to avoid the collapse of finite element approximations. We also extend the study of such approximations to partially free boundary problems and give a theorem for their convergence. Numerical examples showing improvements induced by the method are given throughout the paper.
We study finite element approximations of the nonhomogeneous Dirichlet problem for the fractional Laplacian. Our approach is based on weak imposition of the Dirichlet condition and incorporating a nonlocal analogous of the normal derivative as a Lagr
In this paper, we study an adaptive finite element method for a class of a nonlinear eigenvalue problems that may be of nonconvex energy functional and consider its applications to quantum chemistry. We prove the convergence of adaptive finite elemen
A two-step preconditioned iterative method based on the Hermitian/Skew-Hermitian splitting is applied to the solution of nonsymmetric linear systems arising from the Finite Element approximation of convection-diffusion equations. The theoretical spec
This work comprises a detailed theoretical and computational study of the boundary value problem for transversely isotropic linear elastic bodies. General conditions for well-posedness are derived in terms of the material parameters. The discrete for
The paper is devoted to the spectral analysis of effective preconditioners for linear systems obtained via a Finite Element approximation to diffusion-dominated convection-diffusion equations. We consider a model setting in which the structured finit