ﻻ يوجد ملخص باللغة العربية
We give a Conway-Gordon type formula for invariants of knots and links in a spatial complete four-partite graph $K_{3,3,1,1}$ in terms of the square of the linking number and the second coefficient of the Conway polynomial. As an application, we show that every rectilinear spatial $K_{3,3,1,1}$ contains a nontrivial Hamiltonian knot.
Conway and Gordon proved that for every spatial complete graph on six vertices, the sum of the linking numbers over all of the constituent two-component links is odd, and Kazakov and Korablev proved that for every spatial complete graph with arbitrar
For every spatial embedding of each graph in the Petersen family, it is known that the sum of the linking numbers over all of the constituent 2-component links is congruent to 1 modulo 2. In this paper, we give an integral lift of this formula in ter
In 1983, Conway and Gordon proved that for every spatial complete graph on six vertices, the sum of the linking numbers over all of the constituent two-component links is odd, and that for every spatial complete graph on seven vertices, the sum of th
Conway-Gordon proved that for every spatial complete graph on 6 vertices, the sum of the linking numbers over all of the constituent 2-component links is congruent to 1 modulo 2, and for every spatial complete graph on 7 vertices, the sum of the Arf
Problems of existence, construction and estimation of parameters of interval colorings of complete k-partite graphs K_{n}^{k} are investigated.