ﻻ يوجد ملخص باللغة العربية
An ideal $I$ of a ring $R$ is called left N-reflexive if for any $ain$ nil$(R)$, $bin R$, being $aRb subseteq I$ implies $bRa subseteq I$ where nil$(R)$ is the set of all nilpotent elements of $R$. The ring $R$ is called left N-reflexive if the zero ideal is left N-reflexive. We study the properties of left N-reflexive rings and related concepts. Since reflexive rings and reduced rings are left N-reflexive, we investigate the sufficient conditions for left N-reflexive rings to be reflexive and reduced. We first consider basic extensions of left N-reflexive rings. For an ideal-symmetric ideal $I$ of a ring $R$, $R/I$ is left N-reflexive. If an ideal $I$ of a ring $R$ is reduced as a ring without identity and $R/I$ is left N-reflexive, then $R$ is left N-reflexive. If $R$ is a quasi-Armendariz ring and the coefficients of any nilpotent polynomial in $R[x]$ are nilpotent in $R$, it is proved that $R$ is left N-reflexive if and only if $R[x]$ is left N-reflexive. We show that the concept of N-reflexivity is weaker than that of reflexivity and stronger than that of left N-right idempotent reflexivity and right idempotent reflexivity which are introduced in Section 5.
In this paper, we investigate *-DMP elements in $*$-semigroups and $*$-rings. The notion of *-DMP element was introduced by Patr{i}cio in 2004. An element $a$ is *-DMP if there exists a positive integer $m$ such that $a^{m}$ is EP. We first character
Regarding the question of how idempotent elements affect reversible property of rings, we study a version of reversibility depending on idempotents. In this perspective, we introduce {it right} (resp., {it left}) {it $e$-reversible rings}. We show th
W. A. Moens proved that a Lie algebra is nilpotent if and only if it admits an invertible Leibniz-derivation. In this paper we show that with the definition of Leibniz-derivation from W. A. Moens the similar result for non Lie Leibniz algebras is not
Recently, by A. Elduque and A. Labra a new technique and a type of an evolution algebra are introduced. Several nilpotent evolution algebras defined in terms of bilinear forms and symmetric endomorphisms are constructed. The technique then used for t
We give the complete algebraic classification of all complex 4-dimensional nilpotent algebras. The final list has 234 (parametric families of) isomorphism classes of algebras, 66 of which are new in the literature.