ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate *-DMP elements in $*$-semigroups and $*$-rings. The notion of *-DMP element was introduced by Patr{i}cio in 2004. An element $a$ is *-DMP if there exists a positive integer $m$ such that $a^{m}$ is EP. We first characterize *-DMP elements in terms of the {1,3}-inverse, Drazin inverse and pseudo core inverse, respectively. Then, we give the pseudo core decomposition utilizing the pseudo core inverse, which extends the core-EP decomposition introduced by Wang for matrices to an arbitrary $*$-ring; and this decomposition turns to be a useful tool to characterize *-DMP elements. Further, we extend Wangs core-EP order from matrices to $*$-rings and use it to investigate *-DMP elements. Finally, we give necessary and sufficient conditions for two elements $a,~b$ in $*$-rings to have $aa^{scriptsizetextcircled{tiny D}}=bb^{scriptsizetextcircled{tiny D}}$, which contribute to investigate *-DMP elements.
An ideal $I$ of a ring $R$ is called left N-reflexive if for any $ain$ nil$(R)$, $bin R$, being $aRb subseteq I$ implies $bRa subseteq I$ where nil$(R)$ is the set of all nilpotent elements of $R$. The ring $R$ is called left N-reflexive if the zero
We analyze random walks on a class of semigroups called ``left-regular bands. These walks include the hyperplane chamber walks of Bidigare, Hanlon, and Rockmore. Using methods of ring theory, we show that the transition matrices are diagonalizable an
The concept of a k-translatable groupoid is explored in depth. Some properties of idempotent k-translatable groupoids, left cancellative k-translatable groupoids and left unitary k-translatable groupoids are proved. Necessary and sufficient condition
When does the complex product of a given number of subsets of a group generate the same subgroup as their union? We answer this question in a more general form by introducing HS-stability and characterising the HS-stable involution subsemigroup gener
Recent research of the author has given an explicit geometric description of free (two-sided) adequate semigroups and monoids, as sets of labelled directed trees under a natural combinatorial multiplication. In this paper we show that there are natur