ﻻ يوجد ملخص باللغة العربية
Recently, by A. Elduque and A. Labra a new technique and a type of an evolution algebra are introduced. Several nilpotent evolution algebras defined in terms of bilinear forms and symmetric endomorphisms are constructed. The technique then used for the classification of the nilpotent evolution algebras up to dimension five. In this paper we develop this technique for high dimensional evolution algebras. We construct nilpotent evolution algebras of any type. Moreover, we show that, except the cases considered by Elduque and Labra, this construction of nilpotent evolution algebras does not give all possible nilpotent evolution algebras.
W. A. Moens proved that a Lie algebra is nilpotent if and only if it admits an invertible Leibniz-derivation. In this paper we show that with the definition of Leibniz-derivation from W. A. Moens the similar result for non Lie Leibniz algebras is not
We give the complete algebraic classification of all complex 4-dimensional nilpotent algebras. The final list has 234 (parametric families of) isomorphism classes of algebras, 66 of which are new in the literature.
The classification of complex of real finite dimensional Lie algebras which are not semi simple is still in its early stages. For example the nilpotent Lie algebras are classified only up to the dimension 7. Moreover, to recognize a given Lie algebra
We give the classification of $5$- and $6$-dimensional complex one-generated nilpotent assosymmetric algebras.
Let k be a field, q in k. We derive a cup product formula on the Hochschild cohomology ring of a family Lambda_q of quiver algebras. Using this formula, we determine a subalgebra of k[x,y] isomorphic to Hochschild cohomology modulo N, where N is the