ترغب بنشر مسار تعليمي؟ اضغط هنا

Mixtures of blue phase liquid crystal with simple liquids: elastic emulsions and cubic fluid cylinders

108   0   0.0 ( 0 )
 نشر من قبل Davide Marenduzzo
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate numerically the behaviour of a phase-separating mixture of a blue phase I liquid crystal with an isotropic fluid. The resulting morphology is primarily controlled by an inverse capillary number, $chi$, setting the balance between interfacial and elastic forces. When $chi$ and the concentration of the isotropic component are both low, the blue phase disclination lattice templates a cubic array of fluid cylinders. For larger $chi$, the isotropic phase arranges primarily into liquid emulsion droplets which coarsen very slowly, rewiring the blue phase disclination lines into an amorphous elastic network. Our blue phase/simple fluid composites can be externally manipulated: an electric field can trigger a morphological transition between cubic fluid cylinder phases with different topologies.



قيم البحث

اقرأ أيضاً

Liquid crystalline polymers are materials of considerable scientific interest and technological value to society [1-3]. An important subset of such materials exhibit rubber-like elasticity; these can combine the remarkable optical properties of liqui d crystals with the favourable mechanical properties of rubber and, further, exhibit behaviour not seen in either type of material independently [2]. Many of their properties depend crucially on the particular mesophase employed. Stretchable liquid crystalline polymers have previously been demonstrated in the nematic, chiral nematic, and smectic mesophases [2,4]. Here were report the fabrication of a stretchable gel of blue phase I, which forms a self-assembled, three-dimensional photonic crystal that may have its optical properties manipulated by an applied strain and, further, remains electro-optically switchable under a moderate applied voltage. We find that, unlike its undistorted counterpart, a mechanically deformed blue phase exhibits a Pockels electro-optic effect, which sets out new theoretical challenges and new possibilities for low-voltage electro-optic devices.
The stability of the equilibrium configurations of a nematic liquid crystal confined between two coaxial cylinders is analysed when a radial electric field is applied and the flexoelectric effect is taken into account. The threshold for perturbations depending only on the radius r in the cylindrical coordinate system and strong boundary conditions is studied. A new type of orientational transition caused by pure flexoelectric effect is found.
Multicomponent systems are ubiquitous in nature and industry. While the physics of few-component liquid mixtures (i.e., binary and ternary ones) is well-understood and routinely taught in undergraduate courses, the thermodynamic and kinetic propertie s of $N$-component mixtures with $N>3$ have remained relatively unexplored. An example of such a mixture is provided by the intracellular fluid, in which protein-rich droplets phase separate into distinct membraneless organelles. In this work, we investigate equilibrium phase behavior and morphology of $N$-component liquid mixtures within the Flory-Huggins theory of regular solutions. In order to determine the number of coexisting phases and their compositions, we developed a new algorithm for constructing complete phase diagrams, based on numerical convexification of the discretized free energy landscape. Together with a Cahn-Hilliard approach for kinetics, we employ this method to study mixtures with $N=4$ and $5$ components. We report on both the coarsening behavior of such systems, as well as the resulting morphologies in three spatial dimensions. We discuss how the number of coexisting phases and their compositions can be extracted with Principal Component Analysis (PCA) and K-Means clustering algorithms. Finally, we discuss how one can reverse engineer the interaction parameters and volume fractions of components in order to achieve a range of desired packing structures, such as nested `Russian dolls and encapsulated Janus droplets.
Using density functionals from fundamental measure theory, phase diagrams and crystal-fluid surface tensions in additive and nonadditive (Asakura-Oosawa model) two-dimensional hard disk mixtures are determined for the whole range of size ratios $q$ b etween disks, assuming random disorder in the crystal phase. The fluid-crystal transitions are first-order due to the assumption of a periodic unit cell in the density functional calculations. Qualitatively, the shape of the phase diagrams is similar to the case of three-dimensional hard sphere mixtures. For the nonadditive case, a broadening of the fluid-crystal coexistence region is found for small $q$ whereas for higher $q$ a vapor--fluid transition intervenes. In the additive case, we find a sequence of spindle type, azeotropic and eutectic phase diagrams upon lowering $q$ from 1 to 0.6. The transition from azeotropic to eutectic is different from the three-dimensional case. Surface tensions in general become smaller (up to a factor 2) upon addition of a second species and they are rather small. The minimization of the functionals proceeds without restrictions and optimized graphics card routines are used.
We report on a construction for smectic blue phases, which have quasi-long range smectic translational order as well as long range cubic or hexagonal order. Our proposed structures fill space with a combination of minimal surface patches and cylindri cal tubes. We find that for the right range of material parameters, the favorable saddle-splay energy of these structures can stabilize them against uniform layered structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا