ﻻ يوجد ملخص باللغة العربية
We investigate numerically the behaviour of a phase-separating mixture of a blue phase I liquid crystal with an isotropic fluid. The resulting morphology is primarily controlled by an inverse capillary number, $chi$, setting the balance between interfacial and elastic forces. When $chi$ and the concentration of the isotropic component are both low, the blue phase disclination lattice templates a cubic array of fluid cylinders. For larger $chi$, the isotropic phase arranges primarily into liquid emulsion droplets which coarsen very slowly, rewiring the blue phase disclination lines into an amorphous elastic network. Our blue phase/simple fluid composites can be externally manipulated: an electric field can trigger a morphological transition between cubic fluid cylinder phases with different topologies.
Liquid crystalline polymers are materials of considerable scientific interest and technological value to society [1-3]. An important subset of such materials exhibit rubber-like elasticity; these can combine the remarkable optical properties of liqui
The stability of the equilibrium configurations of a nematic liquid crystal confined between two coaxial cylinders is analysed when a radial electric field is applied and the flexoelectric effect is taken into account. The threshold for perturbations
Multicomponent systems are ubiquitous in nature and industry. While the physics of few-component liquid mixtures (i.e., binary and ternary ones) is well-understood and routinely taught in undergraduate courses, the thermodynamic and kinetic propertie
Using density functionals from fundamental measure theory, phase diagrams and crystal-fluid surface tensions in additive and nonadditive (Asakura-Oosawa model) two-dimensional hard disk mixtures are determined for the whole range of size ratios $q$ b
We report on a construction for smectic blue phases, which have quasi-long range smectic translational order as well as long range cubic or hexagonal order. Our proposed structures fill space with a combination of minimal surface patches and cylindri