ﻻ يوجد ملخص باللغة العربية
Multicomponent systems are ubiquitous in nature and industry. While the physics of few-component liquid mixtures (i.e., binary and ternary ones) is well-understood and routinely taught in undergraduate courses, the thermodynamic and kinetic properties of $N$-component mixtures with $N>3$ have remained relatively unexplored. An example of such a mixture is provided by the intracellular fluid, in which protein-rich droplets phase separate into distinct membraneless organelles. In this work, we investigate equilibrium phase behavior and morphology of $N$-component liquid mixtures within the Flory-Huggins theory of regular solutions. In order to determine the number of coexisting phases and their compositions, we developed a new algorithm for constructing complete phase diagrams, based on numerical convexification of the discretized free energy landscape. Together with a Cahn-Hilliard approach for kinetics, we employ this method to study mixtures with $N=4$ and $5$ components. We report on both the coarsening behavior of such systems, as well as the resulting morphologies in three spatial dimensions. We discuss how the number of coexisting phases and their compositions can be extracted with Principal Component Analysis (PCA) and K-Means clustering algorithms. Finally, we discuss how one can reverse engineer the interaction parameters and volume fractions of components in order to achieve a range of desired packing structures, such as nested `Russian dolls and encapsulated Janus droplets.
Phase separation of multicomponent liquid mixtures plays an integral part in many processes ranging from industry to cellular biology. In many cases the morphology of coexisting phases is crucially linked to the function of the separated mixture, yet
The effective pair potentials between different kinds of dendrimers in solution can be well approximated by appropriate Gaussian functions. We find that in binary dendrimer mixtures the range and strength of the effective interactions depend strongly
We investigate the phase behavior and kinetics of a monodisperse mixture of active (textit{i.e.}, self-propelled) and passive isometric Brownian particles through Brownian dynamics simulations and theory. As in a purely active system, motility of the
If a fluctuating medium is confined, the ensuing perturbation of its fluctuation spectrum generates Casimir-like effective forces acting on its confining surfaces. Near a continuous phase transition of such a medium the corresponding order parameter
Spontaneous liquid-liquid phase separation is commonly understood in terms of phenomenological mean-field theories. These theories correctly predict the structural features of the fluid at sufficiently long time scales and wavelengths. However, these