ﻻ يوجد ملخص باللغة العربية
Using density functionals from fundamental measure theory, phase diagrams and crystal-fluid surface tensions in additive and nonadditive (Asakura-Oosawa model) two-dimensional hard disk mixtures are determined for the whole range of size ratios $q$ between disks, assuming random disorder in the crystal phase. The fluid-crystal transitions are first-order due to the assumption of a periodic unit cell in the density functional calculations. Qualitatively, the shape of the phase diagrams is similar to the case of three-dimensional hard sphere mixtures. For the nonadditive case, a broadening of the fluid-crystal coexistence region is found for small $q$ whereas for higher $q$ a vapor--fluid transition intervenes. In the additive case, we find a sequence of spindle type, azeotropic and eutectic phase diagrams upon lowering $q$ from 1 to 0.6. The transition from azeotropic to eutectic is different from the three-dimensional case. Surface tensions in general become smaller (up to a factor 2) upon addition of a second species and they are rather small. The minimization of the functionals proceeds without restrictions and optimized graphics card routines are used.
An approach to obtain the structural properties of additive binary hard-sphere mixtures is presented. Such an approach, which is a nontrivial generalization of the one recently used for monocomponent hard-sphere fluids [S. Pieprzyk, A. C. Branka, and
We compute the fourth virial coefficient of a binary nonadditive hard-sphere mixture over a wide range of deviations from diameter additivity and size ratios. Hinging on this knowledge, we build up a $y$ expansion [B. Barboy and W. N. Gelbart, J. Che
We investigate numerically the behaviour of a phase-separating mixture of a blue phase I liquid crystal with an isotropic fluid. The resulting morphology is primarily controlled by an inverse capillary number, $chi$, setting the balance between inter
The structural properties of additive binary hard-sphere mixtures are addressed as a follow-up of a previous paper [S. Pieprzyk et al., Phys. Rev. E 101, 012117 (2020)]. The so-called rational-function approximation method and an approach combining a
In materials science the phase field crystal approach has become popular to model crystallization processes. Phase field crystal models are in essence Landau-Ginzburg-type models, which should be derivable from the underlying microscopic description