ﻻ يوجد ملخص باللغة العربية
Non-linear phase field models are increasingly used for the simulation of fracture propagation models. The numerical simulation of fracture networks of realistic size requires the efficient parallel solution of large coupled non-linear systems. Although in principle efficient iterative multi-level methods for these types of problems are available, they are not widely used in practice due to the complexity of their parallel implementation. Here, we present Utopia, which is an open-source C++ library for parallel non-linear multilevel solution strategies. Utopia provides the advantages of high-level programming interfaces while at the same time a framework to access low-level data-structures without breaking code encapsulation. Complex numerical procedures can be expressed with few lines of code, and evaluated by different implementations, libraries, or computing hardware. In this paper, we investigate the parallel performance of our implementation of the recursive multilevel trust-region (RMTR) method based on the Utopia library. RMTR is a globally convergent multilevel solution strategy designed to solve non-convex constrained minimization problems. In particular, we solve pressure-induced phase-field fracture propagation in large and complex fracture networks. Solving such problems is deemed challenging even for a few fractures, however, here we are considering networks of realistic size with up to 1000 fractures.
An efficient method for the calculation of ferromagnetic resonant modes of magnetic structures is presented. Finite-element discretization allows flexible geometries and location dependent material parameters. The resonant modes can be used for a sem
We present a topology-based method for mesh-partitioning in three-dimensional discrete fracture network (DFN) simulations that take advantage of the intrinsic multi-level nature of a DFN. DFN models are used to simulate flow and transport through low
This paper concerns the analysis and implementation of a novel iterative staggered scheme for quasi-static brittle fracture propagation models, where the fracture evolution is tracked by a phase field variable. The model we consider is a two-field va
Sensitivity analysis plays an important role in searching for constitutive parameters (e.g. permeability) subsurface flow simulations. The mathematics behind is to solve a dynamic constrained optimization problem. Traditional methods like finite diff
The multiscale patch scheme is built from given small micro-scale simulations of complicated physical processes to empower large macro-scale simulations. By coupling small patches of simulations over unsimulated spatial gaps, large savings in computa