ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization and Correction of Time-Varying Eddy Currents for Diffusion MRI

268   0   0.0 ( 0 )
 نشر من قبل Jake Valsamis
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Purpose: Diffusion MRI (dMRI) suffers from eddy currents induced by strong diffusion gradients, which introduce artefacts that can impair subsequent diffusion metric analysis. Existing retrospective correction techniques that correct for diffusion gradient induced eddy currents do not account for eddy current decay, which is generally effective for traditional Pulsed Gradient Spin Echo (PGSE) diffusion encoding. However, these techniques do not necessarily apply to advanced forms of dMRI that require substantial gradient slewing, such as Oscillating Gradient Spin Echo (OGSE). Methods: An in-house algorithm (TVEDDY), that for the first time retrospectively models eddy current decay, was tested on PGSE and OGSE brain images acquired at 7T. Correction performance was compared to conventional correction methods by evaluating the mean-squared error (MSE) between diffusion-weighted images acquired with opposite polarity diffusion gradients. As a ground truth comparison, images were corrected using field dynamics up to third order in space measured using a field monitoring system. Results: Time-varying eddy currents were observed for OGSE, which introduced blurring that was not reduced using the traditional approach but was diminished considerably with TVEDDY and model-based reconstruction. No MSE difference was observed between the conventional approach and TVEDDY for PGSE, but for OGSE TVEDDY resulted in significantly lower MSE than the conventional approach. The field-monitoring-informed model-based reconstruction had the lowest MSE for both PGSE and OGSE. Conclusion: This work establishes that it is possible to estimate time-varying eddy currents from the diffusion data itself, which provides substantial image quality improvements for gradient-intensive dMRI acquisitions like OGSE.



قيم البحث

اقرأ أيضاً

Diffusion MRI offers a unique probe into neural microstructure and connectivity in the developing brain. However, analysis of neonatal brain imaging data is complicated by inevitable subject motion, leading to a series of scattered slices that need t o be aligned within and across diffusion-weighted contrasts. Here, we develop a reconstruction method for scattered slice multi-shell high angular resolution diffusion imaging (HARDI) data, jointly estimating an uncorrupted data representation and motion parameters at the slice or multiband excitation level. The reconstruction relies on data-driven representation of multi-shell HARDI data using a bespoke spherical harmonics and radial decomposition (SHARD), which avoids imposing model assumptions, thus facilitating to compare various microstructure imaging methods in the reconstructed output. Furthermore, the proposed framework integrates slice-level outlier rejection, distortion correction, and slice profile correction. We evaluate the method in the neonatal cohort of the developing Human Connectome Project (650 scans). Validation experiments demonstrate accurate slice-level motion correction across the age range and across the range of motion in the population. Results in the neonatal data show successful reconstruction even in severely motion-corrupted subjects. In addition, we illustrate how local tissue modelling can extract advanced microstructure features such as orientation distribution functions from the motion-corrected reconstructions.
In utero diffusion MRI provides unique opportunities to non-invasively study the microstructure of tissue during fetal development. A wide range of developmental processes, such as the growth of white matter tracts in the brain, the maturation of pla cental villous trees, or the fibres in the fetal heart remain to be studied and understood in detail. Advances in fetal interventions and surgery furthermore increase the need for ever more precise antenatal diagnosis from fetal MRI. However, the specific properties of the in utero environment, such as fetal and maternal motion, increased field-of-view, tissue interfaces and safety considerations, are significant challenges for most MRI techniques, and particularly for diffusion. Recent years have seen major improvements, driven by the development of bespoke techniques adapted to these specific challenges in both acquisition and processing. Fetal diffusion MRI, an emerging research tool, is now adding valuable novel information for both research and clinical questions. This paper will highlight specific challenges, outline strategies to target them, and discuss two main applications: fetal brain connectomics and placental maturation.
Computational models of biophysical tissue properties have been widely used in diffusion MRI (dMRI) research to elucidate the link between microstructural properties and MR signal formation. For brain tissue, the research community has developed the so-called Standard Model (SM) that has been widely used. However, in clinically applicable acquisition protocols, the inverse problem that recovers the SM parameters from a set of MR diffusion measurements using pairs of short pulsed field gradients was shown to be ill-posed. Multidimensional dMRI was shown to solve this problem by combining linear and planar tensor encoding data. Given sufficient measurements, multiple choices of b-tensor sets provide enough information to estimate all SM parameters. However, in the presence of noise, some sets will provide better results. In this work, we develop a framework for optimal experimental design of multidimensional dMRI sequences applicable to the SM. This framework is based on maximising the determinant of the Fisher information matrix, which is averaged over the full SM parameter space. This averaging provides a fairly objective information metric tailored for the expected signal but that only depends on the acquisition configuration. The optimisation of this metric can be further restricted to any subclass of desirable design constraints like, for instance, hardware-specific constraints. In this work, we compute the optimal acquisitions over the set of all b-tensors with fixed eigenvectors.
In in-utero MRI, motion correction for fetal body and placenta poses a particular challenge due to the presence of local non-rigid transformations of organs caused by bending and stretching. The existing slice-to-volume registration (SVR) reconstruct ion methods are widely employed for motion correction of fetal brain that undergoes only rigid transformation. However, for reconstruction of fetal body and placenta, rigid registration cannot resolve the issue of misregistrations due to deformable motion, resulting in degradation of features in the reconstructed volume. We propose a Deformable SVR (DSVR), a novel approach for non-rigid motion correction of fetal MRI based on a hierarchical deformable SVR scheme to allow high resolution reconstruction of the fetal body and placenta. Additionally, a robust scheme for structure-based rejection of outliers minimises the impact of registration errors. The improved performance of DSVR in comparison to SVR and patch-to-volume registration (PVR) methods is quantitatively demonstrated in simulated experiments and 20 fetal MRI datasets from 28-31 weeks gestational age (GA) range with varying degree of motion corruption. In addition, we present qualitative evaluation of 100 fetal body cases from 20-34 weeks GA range.
Diffusion-weighted MRI measures the direction and scale of the local diffusion process in every voxel through its spectrum in q-space, typically acquired in one or more shells. Recent developments in microstructure imaging and multi-tissue decomposit ion have sparked renewed attention in the radial b-value dependence of the signal. Applications in motion correction and outlier rejection therefore require a compact linear signal representation that extends over the radial as well as angular domain. Here, we introduce SHARD, a data-driven representation of the q-space signal based on spherical harmonics and a radial decomposition into orthonormal components. This representation provides a complete, orthogonal signal basis, tailored to the spherical geometry of q-space and calibrated to the data at hand. We demonstrate that the rank-reduced decomposition outperforms model-based alternatives in human brain data, whilst faithfully capturing the micro- and meso-structural information in the signal. Furthermore, we validate the potential of joint radial-spherical as compared to single-shell representations. As such, SHARD is optimally suited for applications that require low-rank signal predictions, such as motion correction and outlier rejection. Finally, we illustrate its application for the latter using outlier robust regression.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا