ﻻ يوجد ملخص باللغة العربية
We propose a novel distributed iterative linear inverse solver method. Our method, PolyLin, has significantly lower communication cost, both in terms of number of rounds as well as number of bits, in comparison with the state of the art at the cost of higher computational complexity and storage. Our algorithm also has a built-in resilience to straggling and faulty computation nodes. We develop a natural variant of our main algorithm that trades off communication cost for computational complexity. Our method is inspired by ideas in error correcting codes.
Distributed implementations of gradient-based methods, wherein a server distributes gradient computations across worker machines, need to overcome two limitations: delays caused by slow running machines called stragglers, and communication overheads.
We present a communication-efficient distributed protocol for computing the Babai point, an approximate nearest point for a random vector ${bf X}inmathbb{R}^n$ in a given lattice. We show that the protocol is optimal in the sense that it minimizes th
In large scale distributed storage systems (DSS) deployed in cloud computing, correlated failures resulting in simultaneous failure (or, unavailability) of blocks of nodes are common. In such scenarios, the stored data or a content of a failed node c
Distributed matrix computations -- matrix-matrix or matrix-vector multiplications -- are well-recognized to suffer from the problem of stragglers (slow or failed worker nodes). Much of prior work in this area is (i) either sub-optimal in terms of its
Wireless communication with unmanned aerial vehicles (UAVs) is a promising technology for future communication systems. In this paper, we study energy-efficient UAV communication with a ground terminal via optimizing the UAVs trajectory, a new design