ﻻ يوجد ملخص باللغة العربية
Distributed implementations of gradient-based methods, wherein a server distributes gradient computations across worker machines, need to overcome two limitations: delays caused by slow running machines called stragglers, and communication overheads. Recently, Ye and Abbe [ICML 2018] proposed a coding-theoretic paradigm to characterize a fundamental trade-off between computation load per worker, communication overhead per worker, and straggler tolerance. However, their proposed coding schemes suffer from heavy decoding complexity and poor numerical stability. In this paper, we develop a communication-efficient gradient coding framework to overcome these drawbacks. Our proposed framework enables using any linear code to design the encoding and decoding functions. When a particular code is used in this framework, its block-length determines the computation load, dimension determines the communication overhead, and minimum distance determines the straggler tolerance. The flexibility of choosing a code allows us to gracefully trade-off the straggler threshold and communication overhead for smaller decoding complexity and higher numerical stability. Further, we show that using a maximum distance separable (MDS) code generated by a random Gaussian matrix in our framework yields a gradient code that is optimal with respect to the trade-off and, in addition, satisfies stronger guarantees on numerical stability as compared to the previously proposed schemes. Finally, we evaluate our proposed framework on Amazon EC2 and demonstrate that it reduces the average iteration time by 16% as compared to prior gradient coding schemes.
In distributed synchronous gradient descent (GD) the main performance bottleneck for the per-iteration completion time is the slowest textit{straggling} workers. To speed up GD iterations in the presence of stragglers, coded distributed computation t
Distributed implementations are crucial in speeding up large scale machine learning applications. Distributed gradient descent (GD) is widely employed to parallelize the learning task by distributing the dataset across multiple workers. A significant
Large-scale machine learning and data mining methods routinely distribute computations across multiple agents to parallelize processing. The time required for computation at the agents is affected by the availability of local resources giving rise to
Master-worker distributed computing systems use task replication in order to mitigate the effect of slow workers, known as stragglers. Tasks are grouped into batches and assigned to one or more workers for execution. We first consider the case when t
We propose a novel distributed iterative linear inverse solver method. Our method, PolyLin, has significantly lower communication cost, both in terms of number of rounds as well as number of bits, in comparison with the state of the art at the cost o