ﻻ يوجد ملخص باللغة العربية
Distributed matrix computations -- matrix-matrix or matrix-vector multiplications -- are well-recognized to suffer from the problem of stragglers (slow or failed worker nodes). Much of prior work in this area is (i) either sub-optimal in terms of its straggler resilience, or (ii) suffers from numerical problems, i.e., there is a blow-up of round-off errors in the decoded result owing to the high condition numbers of the corresponding decoding matrices. Our work presents convolutional coding approach to this problem that removes these limitations. It is optimal in terms of its straggler resilience, and has excellent numerical robustness as long as the workers storage capacity is slightly higher than the fundamental lower bound. Moreover, it can be decoded using a fast peeling decoder that only involves add/subtract operations. Our second approach has marginally higher decoding complexity than the first one, but allows us to operate arbitrarily close to the lower bound. Its numerical robustness can be theoretically quantified by deriving a computable upper bound on the worst case condition number over all possible decoding matrices by drawing connections with the properties of large Toeplitz matrices. All above claims are backed up by extensive experiments done on the AWS cloud platform.
Random linear network codes can be designed and implemented in a distributed manner, with low computational complexity. However, these codes are classically implemented over finite fields whose size depends on some global network parameters (size of
In a distributed storage system, code symbols are dispersed across space in nodes or storage units as opposed to time. In settings such as that of a large data center, an important consideration is the efficient repair of a failed node. Efficient rep
We consider the problem of designing codes with flexible rate (referred to as rateless codes), for private distributed matrix-matrix multiplication. A master server owns two private matrices $mathbf{A}$ and $mathbf{B}$ and hires worker nodes to help
The distributed source coding problem is considered when the sensors, or encoders, are under Byzantine attack; that is, an unknown group of sensors have been reprogrammed by a malicious intruder to undermine the reconstruction at the fusion center. T
Distributed arithmetic coding (DAC) has been shown to be effective for Slepian-Wolf coding, especially for short data blocks. In this letter, we propose to use the DAC to compress momery-correlated sources. More specifically, the correlation between