ﻻ يوجد ملخص باللغة العربية
We report on precise localization spectroscopy experiments of individual 13C nuclear spins near a central electronic sensor spin in a diamond chip. By detecting the nuclear free precession signals in rapidly switchable external magnetic fields, we retrieve the three-dimensional spatial coordinates of the nuclear spins with sub-Angstrom resolution and for distances beyond 10 Angstroms. We further show that the Fermi contact contribution can be constrained by measuring the nuclear g-factor enhancement. The presented method will be useful for mapping the atomic-scale structure of single molecules, an ambitious yet important goal of nanoscale nuclear magnetic resonance spectroscopy.
Quantum sensors have recently achieved to detect the magnetic moment of few or single nuclear spins and measure their magnetic resonance (NMR) signal. However, the spectral resolution, a key feature of NMR, has been limited by relaxation of the senso
Magnetic resonance imaging (MRI) has revolutionized biomedical science by providing non-invasive, three-dimensional biological imaging. However, spatial resolution in conventional MRI systems is limited to tens of microns, which is insufficient for i
Multidimensional coherent optical spectroscopy is one of the most powerful tools for investigating complex quantum mechanical systems. While it was conceived decades ago in magnetic resonance spectroscopy using micro- and radio-waves, it has recently
Nuclear magnetic resonance (NMR) spectroscopy has approached the limit of single molecule sensitivity, however the spectral resolution is currently insufficient to obtain detailed information on chemical structure and molecular interactions. Here we
We experimentally demonstrate high degree of polarization of 13C nuclear spins weakly interacting with nitrogen-vacancy (NV) centers in diamond. We combine coherent microwave excitation pulses with optical illumination to provide controlled relaxatio