ﻻ يوجد ملخص باللغة العربية
Nuclear magnetic resonance (NMR) spectroscopy has approached the limit of single molecule sensitivity, however the spectral resolution is currently insufficient to obtain detailed information on chemical structure and molecular interactions. Here we demonstrate more than two orders of magnitude improvement in spectral resolution by performing correlation spectroscopy with shallow nitrogen-vacancy (NV) magnetic sensors in diamond. In principle, the resolution is sufficient to observe chemical shifts in $sim$1 T magnetic fields, and is currently limited by molecular diffusion at the surface. We measure oil diffusion rates of $D = 0.15 - 0.2$,nm$^2/mathrm{mu}$s within (5 nm)$^3$ volumes at the diamond surface.
We present a new method for high-resolution nanoscale magnetic resonance imaging (nano-MRI) that combines the high spin sensitivity of nanowire-based magnetic resonance detection with high spectral resolution nuclear magnetic resonance (NMR) spectros
We propose an approach for super-resolution optical lithography which is based on the inverse of magnetic resonance imaging (MRI). The technique uses atomic coherence in an ensemble of spin systems whose final state population can be optically detect
Two-dimensional Nuclear Magnetic Resonance (NMR) is essential in molecular structure determination. The Nitrogen-Vacancy (NV) center in diamond has been proposed and developed as an outstanding quantum sensor to realize NMR in nanoscale. In this work
Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are well-established techniques that provide valuable information in a diverse set of disciplines but are currently limited to macroscopic sample volumes. Here we demonstrate nanos
Scanning probe microscopy is one of the most versatile windows into the nanoworld, providing imaging access to a variety of sample properties, depending on the probe employed. Tunneling probes map electronic properties of samples, magnetic and photon