ﻻ يوجد ملخص باللغة العربية
Quantum sensors have recently achieved to detect the magnetic moment of few or single nuclear spins and measure their magnetic resonance (NMR) signal. However, the spectral resolution, a key feature of NMR, has been limited by relaxation of the sensor to a few kHz at room temperature. The spectral resolution of NMR signals from single nuclear spins can be improved by, e.g., using quantum memories, however at the expense of sensitivity. Classical signals on the other hand can be measured with exceptional spectral resolution by using continuous measurement techniques, without compromising sensitivity. To apply these techniques to single-spin NMR, it is critical to overcome the impact of back action inherent of quantum measurements. Here we report sequential weak measurements on a single $^{13}$C nuclear spin. The back-action of repetitive weak measurements causes the spin to undergo a quantum dynamics phase transition from coherent trapping to coherent oscillation. Single-spin NMR at room-temperature with a spectral resolution of 3.8 Hz is achieved. These results enable the use of measurement-correlation schemes for the detection of very weakly coupled single spins.
Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for analyzing the structure and function of molecules, and for performing three-dimensional imaging of the spin density. At the heart of NMR spectrometers is the detection of elect
We report on precise localization spectroscopy experiments of individual 13C nuclear spins near a central electronic sensor spin in a diamond chip. By detecting the nuclear free precession signals in rapidly switchable external magnetic fields, we re
The understanding of weak measurements and interaction-free measurements has greatly expanded the conceptual and experimental toolbox to explore the quantum world. Here we demonstrate single-shot variable-strength weak measurements of the electron an
Multidimensional coherent optical spectroscopy is one of the most powerful tools for investigating complex quantum mechanical systems. While it was conceived decades ago in magnetic resonance spectroscopy using micro- and radio-waves, it has recently
Nanomagnetometry using the nitrogen-vacancy (NV) centre in diamond has attracted a great deal of interest because of the combined features of room temperature operation, nanoscale resolution and high sensitivity. One of the important goals for nano-m