ﻻ يوجد ملخص باللغة العربية
The odds ratio (OR) is a widely used measure of the effect size in observational research. ORs reflect statistical association between a binary outcome, such as the presence of a health condition, and a binary predictor, such as an exposure to a pollutant. Statistical significance and interval estimates are often computed for the logarithm of OR, ln(OR), and depend on the asymptotic standard error of ln(OR). For a sample of size N, the standard error can be written as a ratio of sigma over square root of N, where sigma is the population standard deviation of ln(OR). The ratio of ln(OR) over sigma is a standardized effect size. Unlike correlation, that is another familiar standardized statistic, the standardized ln(OR) cannot reach values of minus one or one. We find that its maximum possible value is given by the Laplace Limit Constant, (LLC=0.6627...), that appears as a condition in solutions to Kepler equation -- one of the central equations in celestial mechanics. The range of the standardized ln(OR) is bounded by minus LLC to LLC, reaching its maximum for ln(OR)~4.7987. This range has implications for analysis of epidemiological associations, affecting the behavior of the reasonable prior distribution for the standardized ln(OR).
The odds ratio measure is used in health and social surveys where the odds of a certain event is to be compared between two populations. It is defined using logistic regression, and requires that data from surveys are accompanied by their weights. A
Let X_1, ..., X_n be independent and identically distributed random vectors with a log-concave (Lebesgue) density f. We first prove that, with probability one, there exists a unique maximum likelihood estimator of f. The use of this estimator is attr
In microbiome studies, one of the ways of studying bacterial abundances is to estimate bacterial composition based on the sequencing read counts. Various transformations are then applied to such compositional data for downstream statistical analysis,
Additive, multiplicative, and odd ratio neutral models for interactions are for long advocated and controversial in epidemiology. We show here that these commonly advocated models are biased, leading to spurious interactions, and missing true interactions.
The odds ratio (OR) is a measure of effect size commonly used in observational research. OR reflects statistical association between a binary outcome, such as the presence of a health condition, and a binary predictor, such as an exposure to a pollut