ﻻ يوجد ملخص باللغة العربية
We extend previous calculations of leading-order correlation functions of spin-0 and spin-1 light quarkonium hybrids to include QCD condensates of dimensions five and six, with a view to improving the stability of QCD sum-rules analyses in previously unstable channels. Based on these calculations, prior analyses in the literature, and its phenomenological importance, we identify the exotic $J^{PC}=0^{+-}$ channel as the most promising for detailed study. Using Gaussian sum-rules constrained by the Holder inequality, we calculate masses of light (nonstrange and strange) quarkonium hybrid mesons with $J^{PC}=0^{+-}$. We consider single narrow, single wide, and double narrow resonance models, and find that the double narrow resonance model yields the best agreement between QCD and phenomenology. In both non-strange and strange cases, we find hybrid masses of $2.60$ GeV and $3.57$ GeV.
We explore conventional meson-hybrid mixing in $J^{PC}=1^{++}$ heavy quarkonium using QCD Laplace sum-rules. We calculate the cross-correlator between a heavy conventional meson current and heavy hybrid current within the operator product expansion,
QCD Laplace sum-rules are used to calculate axial vector $(J^{PC}=1^{++})$ charmonium and bottomonium hybrid masses. Previous sum-rule studies of axial vector heavy quark hybrids did not include the dimension-six gluon condensate, which has been show
We use QCD sum rules to test the nature of the recently observed mesons Y(4260), Y(4350) and Y(4660), assumed to be exotic four-quark $(cbar{c}qbar{q})$ or $(cbar{c}sbar{s})$ states with $J^{PC}=1^{--}$. We work at leading order in $alpha_s$, conside
Axial vector $(J^{PC}=1^{++})$ charmonium and bottomonium hybrid masses are determined via QCD Laplace sum-rules. Previous sum-rule studies in this channel did not incorporate the dimension-six gluon condensate, which has been shown to be important f
We use the Laplace/Borel sum rules (LSR) and the finite energy/local duality sum rules (FESR) to investigate the non-strange $udbar ubar d$ and hidden-strange $usbar ubar s$ tetraquark states with exotic quantum numbers $J^{PC}=0^{+-}$ . We systemati