ﻻ يوجد ملخص باللغة العربية
QCD Laplace sum-rules are used to calculate axial vector $(J^{PC}=1^{++})$ charmonium and bottomonium hybrid masses. Previous sum-rule studies of axial vector heavy quark hybrids did not include the dimension-six gluon condensate, which has been shown to be important in the $1^{--}$ and $0^{-+}$ channels. An updated analysis of axial vector heavy quark hybrids is performed, including the effects of the dimension-six gluon condensate, yielding mass predictions of 5.13 GeV for hybrid charmonium and 11.32 GeV for hybrid bottomonium. The charmonium hybrid mass prediction disfavours a hybrid interpretation of the X(3872), if it has $J^{PC}=1^{++}$, in agreement with the findings of other theoretical approaches. It is noted that QCD sum-rule results for the $1^{--}$, $0^{-+}$ and $1^{++}$ channels are in qualitative agreement with the charmonium hybrid multiplet structure observed in recent lattice calculations.
We explore conventional meson-hybrid mixing in $J^{PC}=1^{++}$ heavy quarkonium using QCD Laplace sum-rules. We calculate the cross-correlator between a heavy conventional meson current and heavy hybrid current within the operator product expansion,
We use QCD Laplace sum-rules to explore mixing between conventional mesons and hybrids in the heavy quarkonium vector $J^{PC}!=!1^{--}$ channel. Our cross-correlator includes perturbation theory and contributions proportional to the four-dimensional
Axial vector $(J^{PC}=1^{++})$ charmonium and bottomonium hybrid masses are determined via QCD Laplace sum-rules. Previous sum-rule studies in this channel did not incorporate the dimension-six gluon condensate, which has been shown to be important f
We use QCD sum rules to test the nature of the recently observed mesons Y(4260), Y(4350) and Y(4660), assumed to be exotic four-quark $(cbar{c}qbar{q})$ or $(cbar{c}sbar{s})$ states with $J^{PC}=1^{--}$. We work at leading order in $alpha_s$, conside
We use QCD Laplace sum-rules to predict masses of open-flavour heavy-light hybrids where one of the hybrids constituent quarks is a charm or bottom and the other is an up, down, or strange. We compute leading-order, diagonal correlation functions of