ﻻ يوجد ملخص باللغة العربية
We use the Laplace/Borel sum rules (LSR) and the finite energy/local duality sum rules (FESR) to investigate the non-strange $udbar ubar d$ and hidden-strange $usbar ubar s$ tetraquark states with exotic quantum numbers $J^{PC}=0^{+-}$ . We systematically construct all eight possible tetraquark currents in this channel without covariant derivative operator. Our analyses show that the $udbar ubar d$ systems have good behaviour of sum rule stability and expansion series convergence in both the LSR and FESR analyses, while the LSR for the $usbar ubar s$ states do not associate with convergent OPE series in the stability regions and only the FESR can provide valid results. We give the mass predictions $1.43pm0.09$ GeV and $1.54pm0.12$ GeV for the $udbar ubar d$ and $usbar ubar s$ tetraquark states, respectively. Our results indicate that the $0^{+-}$ isovector $usbar ubar s$ tetraquark may only decay via weak interaction mechanism, e.g. $X_{usbar{u}bar{s}}to Kpipi$, since its strong decays are forbidden by kinematics and the symmetry constraints on the exotic quantum numbers. It is predicted to be very narrow, if it does exist. The $0^{+-}$ isoscalar $usbar ubar s$ tetraquark is also predicted to be not very wide because its dominate decay mode $X_{usbar{u}bar{s}}tophipipi$ is in $P$-wave.
In this work, we study systematically the mass splittings of the $qqbar{Q}bar{Q}$ ($q=u$, $d$, $s$ and $Q=c$, $b$) tetraquark states with the color-magnetic interaction by considering color mixing effects and estimate roughly their masses. We find th
We have calculated the mass spectra for the $bar{D}_s^{(*)}D^{(*)}$ molecular states and $scbar qbar c$ tetraquark states with $J^P=0^+, 1^+, 2^+$. The masses of the axial-vector $bar{D}_sD^{*}$, $bar{D}_s^{*}D$ molecular states and $mathbf{1}_{[sc]}
We have studied the masses for fully open-flavor tetraquark states $bcbar{q}bar{s}$ and $scbar{q}bar{b}$ with quantum numbers $J^{P}=0^{+},1^{+}$. We systematically construct all diquark-antiquark interpolating currents and calculate the two-point co
The past seventeen years have witnessed tremendous progress on the experimental and theoretical explorations of the multiquark states. The hidden-charm and hidden-bottom multiquark systems were reviewed extensively in [Phys. Rept. 639 (2016) 1-121].
We calculate the masses of the $QQbar{q}bar{q}$ ($Q=c,b$; $q=u,d,s$) tetraquark states with the aid of heavy diquark-antiquark symmetry (HDAS) and the chromomagnetic interaction (CMI) model. The masses of the highest-spin ($J=2$) tetraquarks that hav