ترغب بنشر مسار تعليمي؟ اضغط هنا

Generative Adversarial Networks for Unsupervised Object Co-localization

130   0   0.0 ( 0 )
 نشر من قبل Hyunjung Shim Dr.
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper introduces a novel approach for unsupervised object co-localization using Generative Adversarial Networks (GANs). GAN is a powerful tool that can implicitly learn unknown data distributions in an unsupervised manner. From the observation that GAN discriminator is highly influenced by pixels where objects appear, we analyze the internal layers of discriminator and visualize the activated pixels. Our important finding is that high image diversity of GAN, which is a main goal in GAN research, is ironically disadvantageous for object localization, because such discriminators focus not only on the target object, but also on the various objects, such as background objects. Based on extensive evaluations and experimental studies, we show the image diversity and localization performance have a negative correlation. In addition, our approach achieves meaningful accuracy for unsupervised object co-localization using publicly available benchmark datasets, even comparable to state-of-the-art weakly-supervised approach.



قيم البحث

اقرأ أيضاً

Deep generative models seek to recover the process with which the observed data was generated. They may be used to synthesize new samples or to subsequently extract representations. Successful approaches in the domain of images are driven by several core inductive biases. However, a bias to account for the compositional way in which humans structure a visual scene in terms of objects has frequently been overlooked. In this work, we investigate object compositionality as an inductive bias for Generative Adversarial Networks (GANs). We present a minimal modification of a standard generator to incorporate this inductive bias and find that it reliably learns to generate images as compositions of objects. Using this general design as a backbone, we then propose two useful extensions to incorporate dependencies among objects and background. We extensively evaluate our approach on several multi-object image datasets and highlight the merits of incorporating structure for representation learning purposes. In particular, we find that our structured GANs are better at generating multi-object images that are more faithful to the reference distribution. More so, we demonstrate how, by leveraging the structure of the learned generative process, one can `invert the learned generative model to perform unsupervised instance segmentation. On the challenging CLEVR dataset, it is shown how our approach is able to improve over other recent purely unsupervised object-centric approaches to image generation.
105 - Hui Ying , He Wang , Tianjia Shao 2021
Image generation has been heavily investigated in computer vision, where one core research challenge is to generate images from arbitrarily complex distributions with little supervision. Generative Adversarial Networks (GANs) as an implicit approach have achieved great successes in this direction and therefore been employed widely. However, GANs are known to suffer from issues such as mode collapse, non-structured latent space, being unable to compute likelihoods, etc. In this paper, we propose a new unsupervised non-parametric method named mixture of infinite conditional GANs or MIC-GANs, to tackle several GAN issues together, aiming for image generation with parsimonious prior knowledge. Through comprehensive evaluations across different datasets, we show that MIC-GANs are effective in structuring the latent space and avoiding mode collapse, and outperform state-of-the-art methods. MICGANs are adaptive, versatile, and robust. They offer a promising solution to several well-known GAN issues. Code available: github.com/yinghdb/MICGANs.
Collecting well-annotated image datasets to train modern machine learning algorithms is prohibitively expensive for many tasks. One appealing alternative is rendering synthetic data where ground-truth annotations are generated automatically. Unfortun ately, models trained purely on rendered images often fail to generalize to real images. To address this shortcoming, prior work introduced unsupervised domain adaptation algorithms that attempt to map representations between the two domains or learn to extract features that are domain-invariant. In this work, we present a new approach that learns, in an unsupervised manner, a transformation in the pixel space from one domain to the other. Our generative adversarial network (GAN)-based method adapts source-domain images to appear as if drawn from the target domain. Our approach not only produces plausible samples, but also outperforms the state-of-the-art on a number of unsupervised domain adaptation scenarios by large margins. Finally, we demonstrate that the adaptation process generalizes to object classes unseen during training.
In this paper, we propose a novel framework to translate a portrait photo-face into an anime appearance. Our aim is to synthesize anime-faces which are style-consistent with a given reference anime-face. However, unlike typical translation tasks, suc h anime-face translation is challenging due to complex variations of appearances among anime-faces. Existing methods often fail to transfer the styles of reference anime-faces, or introduce noticeable artifacts/distortions in the local shapes of their generated faces. We propose AniGAN, a novel GAN-based translator that synthesizes high-quality anime-faces. Specifically, a new generator architecture is proposed to simultaneously transfer color/texture styles and transform local facial shapes into anime-like counterparts based on the style of a reference anime-face, while preserving the global structure of the source photo-face. We propose a double-branch discriminator to learn both domain-specific distributions and domain-shared distributions, helping generate visually pleasing anime-faces and effectively mitigate artifacts. Extensive experiments on selfie2anime and a new face2anime dataset qualitatively and quantitatively demonstrate the superiority of our method over state-of-the-art methods. The new dataset is available at https://github.com/bing-li-ai/AniGAN .
The deep generative adversarial networks (GAN) recently have been shown to be promising for different computer vision applications, like image edit- ing, synthesizing high resolution images, generating videos, etc. These networks and the correspondin g learning scheme can handle various visual space map- pings. We approach GANs with a novel training method and learning objective, to discover multiple object instances for three cases: 1) synthesizing a picture of a specific object within a cluttered scene; 2) localizing different categories in images for weakly supervised object detection; and 3) improving object discov- ery in object detection pipelines. A crucial advantage of our method is that it learns a new deep similarity metric, to distinguish multiple objects in one im- age. We demonstrate that the network can act as an encoder-decoder generating parts of an image which contain an object, or as a modified deep CNN to rep- resent images for object detection in supervised and weakly supervised scheme. Our ranking GAN offers a novel way to search through images for object specific patterns. We have conducted experiments for different scenarios and demonstrate the method performance for object synthesizing and weakly supervised object detection and classification using the MS-COCO and PASCAL VOC datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا