ﻻ يوجد ملخص باللغة العربية
The deep generative adversarial networks (GAN) recently have been shown to be promising for different computer vision applications, like image edit- ing, synthesizing high resolution images, generating videos, etc. These networks and the corresponding learning scheme can handle various visual space map- pings. We approach GANs with a novel training method and learning objective, to discover multiple object instances for three cases: 1) synthesizing a picture of a specific object within a cluttered scene; 2) localizing different categories in images for weakly supervised object detection; and 3) improving object discov- ery in object detection pipelines. A crucial advantage of our method is that it learns a new deep similarity metric, to distinguish multiple objects in one im- age. We demonstrate that the network can act as an encoder-decoder generating parts of an image which contain an object, or as a modified deep CNN to rep- resent images for object detection in supervised and weakly supervised scheme. Our ranking GAN offers a novel way to search through images for object specific patterns. We have conducted experiments for different scenarios and demonstrate the method performance for object synthesizing and weakly supervised object detection and classification using the MS-COCO and PASCAL VOC datasets.
Deep generative models seek to recover the process with which the observed data was generated. They may be used to synthesize new samples or to subsequently extract representations. Successful approaches in the domain of images are driven by several
In this article, we propose an approach that can make use of not only labeled EEG signals but also the unlabeled ones which is more accessible. We also suggest the use of data fusion to further improve the seizure prediction accuracy. Data fusion in
Weakly-supervised temporal action localization is a problem of learning an action localization model with only video-level action labeling available. The general framework largely relies on the classification activation, which employs an attention mo
This paper introduces a novel approach for unsupervised object co-localization using Generative Adversarial Networks (GANs). GAN is a powerful tool that can implicitly learn unknown data distributions in an unsupervised manner. From the observation t
Localizing objects with weak supervision in an image is a key problem of the research in computer vision community. Many existing Weakly-Supervised Object Localization (WSOL) approaches tackle this problem by estimating the most discriminative region