ترغب بنشر مسار تعليمي؟ اضغط هنا

AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation

157   0   0.0 ( 0 )
 نشر من قبل Bing Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose a novel framework to translate a portrait photo-face into an anime appearance. Our aim is to synthesize anime-faces which are style-consistent with a given reference anime-face. However, unlike typical translation tasks, such anime-face translation is challenging due to complex variations of appearances among anime-faces. Existing methods often fail to transfer the styles of reference anime-faces, or introduce noticeable artifacts/distortions in the local shapes of their generated faces. We propose AniGAN, a novel GAN-based translator that synthesizes high-quality anime-faces. Specifically, a new generator architecture is proposed to simultaneously transfer color/texture styles and transform local facial shapes into anime-like counterparts based on the style of a reference anime-face, while preserving the global structure of the source photo-face. We propose a double-branch discriminator to learn both domain-specific distributions and domain-shared distributions, helping generate visually pleasing anime-faces and effectively mitigate artifacts. Extensive experiments on selfie2anime and a new face2anime dataset qualitatively and quantitatively demonstrate the superiority of our method over state-of-the-art methods. The new dataset is available at https://github.com/bing-li-ai/AniGAN .



قيم البحث

اقرأ أيضاً

106 - Sitao Xiang , Hao Li 2018
Deep learning-based style transfer between images has recently become a popular area of research. A common way of encoding style is through a feature representation based on the Gram matrix of features extracted by some pre-trained neural network or some other form of feature statistics. Such a definition is based on an arbitrary human decision and may not best capture what a style really is. In trying to gain a better understanding of style, we propose a metric learning-based method to explicitly encode the style of an artwork. In particular, our definition of style captures the differences between artists, as shown by classification performances, and such that the style representation can be interpreted, manipulated and visualized through style-conditioned image generation through a Generative Adversarial Network. We employ this method to explore the style space of anime portrait illustrations.
Recent studies have shown remarkable success in face image generations. However, most of the existing methods only generate face images from random noise, and cannot generate face images according to the specific attributes. In this paper, we focus o n the problem of face synthesis from attributes, which aims at generating faces with specific characteristics corresponding to the given attributes. To this end, we propose a novel attributes aware face image generator method with generative adversarial networks called AFGAN. Specifically, we firstly propose a two-path embedding layer and self-attention mechanism to convert binary attribute vector to rich attribute features. Then three stacked generators generate $64 times 64$, $128 times 128$ and $256 times 256$ resolution face images respectively by taking the attribute features as input. In addition, an image-attribute matching loss is proposed to enhance the correlation between the generated images and input attributes. Extensive experiments on CelebA demonstrate the superiority of our AFGAN in terms of both qualitative and quantitative evaluations.
105 - Hui Ying , He Wang , Tianjia Shao 2021
Image generation has been heavily investigated in computer vision, where one core research challenge is to generate images from arbitrarily complex distributions with little supervision. Generative Adversarial Networks (GANs) as an implicit approach have achieved great successes in this direction and therefore been employed widely. However, GANs are known to suffer from issues such as mode collapse, non-structured latent space, being unable to compute likelihoods, etc. In this paper, we propose a new unsupervised non-parametric method named mixture of infinite conditional GANs or MIC-GANs, to tackle several GAN issues together, aiming for image generation with parsimonious prior knowledge. Through comprehensive evaluations across different datasets, we show that MIC-GANs are effective in structuring the latent space and avoiding mode collapse, and outperform state-of-the-art methods. MICGANs are adaptive, versatile, and robust. They offer a promising solution to several well-known GAN issues. Code available: github.com/yinghdb/MICGANs.
Automatic generation of facial images has been well studied after the Generative Adversarial Network (GAN) came out. There exists some attempts applying the GAN model to the problem of generating facial images of anime characters, but none of the exi sting work gives a promising result. In this work, we explore the training of GAN models specialized on an anime facial image dataset. We address the issue from both the data and the model aspect, by collecting a more clean, well-suited dataset and leverage proper, empirical application of DRAGAN. With quantitative analysis and case studies we demonstrate that our efforts lead to a stable and high-quality model. Moreover, to assist people with anime character design, we build a website (http://make.girls.moe) with our pre-trained model available online, which makes the model easily accessible to general public.
85 - Yi Wei , Zhe Gan , Wenbo Li 2020
We present Mask-guided Generative Adversarial Network (MagGAN) for high-resolution face attribute editing, in which semantic facial masks from a pre-trained face parser are used to guide the fine-grained image editing process. With the introduction o f a mask-guided reconstruction loss, MagGAN learns to only edit the facial parts that are relevant to the desired attribute changes, while preserving the attribute-irrelevant regions (e.g., hat, scarf for modification `To Bald). Further, a novel mask-guided conditioning strategy is introduced to incorporate the influence region of each attribute change into the generator. In addition, a multi-level patch-wise discriminator structure is proposed to scale our model for high-resolution ($1024 times 1024$) face editing. Experiments on the CelebA benchmark show that the proposed method significantly outperforms prior state-of-the-art approaches in terms of both image quality and editing performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا