ﻻ يوجد ملخص باللغة العربية
Near Edge X-ray Absorption, Valence and Core-level Photoemission and Density Functional Theory calculations are used to study molecular levels of tetracyano-2,3,5,6-tetrafluoroquinodimethane (F$_4$TCNQ) deposited on Ag(111) and BiAg$_2$/Ag(111). The high electron affinity of F$_4$TCNQ triggers a large static charge transfer from the substrate, and, more interestingly, hybridization with the substrate leads to a radical change of symmetry, shape and energy of frontier molecular orbitals. The Lowest Unoccupied Molecular Orbital (LUMO) shifts below the Fermi energy, becoming the new Highest Occupied Molecular Orbital ($n$-HOMO), whereas the $n$-LUMO is defined by a hybrid band with mixed $pi^*$ and $sigma^*$ symmetries, localized at quinone rings and cyano groups, respectively. The presence of Bi influences the way the molecule contacts the substrate with the cyano group. The molecule/surface distance is closer and the bond more extended over substrate atoms in F$_4$TCNQ/Ag(111), whereas in F$_4$TCNQ/BiAg$_2$/Ag(111) the distance is larger and the contact more localized on top of Bi. This does not significantly alter molecular levels, but it causes the respective absence or presence of optical excitations in F$_4$TCNQ core-level spectra.
Room temperature ionic liquids play an important role in many technological applications and a detailed understanding of their frontier molecular orbitals is required to optimize interfacial barriers, reactivity and stability with respect to electron
Adsorption of organic molecules on well-oriented single crystal coinage metal surfaces fundamentally affects the energy distribution curve of ultra-violet photoelectron spectroscopy spectra. New features not present in the spectrum of the pristine me
The barrier formation for metal/organic semiconductor interfaces is analyzed within the Induced Density of Interface States (IDIS) model. Using weak chemisorption theory, we calculate the induced density of states in the organic energy gap and show t
Three driving forces control the energy level alignment between transition-metal oxides and organic materials: the chemical interaction between the two materials, the organic electronegativity and the possible space charge layer formed in the oxide.
The interaction of the strong electron-acceptor tetracyanoethylene (TCNE) with the Cu(100) surface has been studied with scanning tunneling microscopy experiments and first-principles density functional theory calculations. We compare two different a