ترغب بنشر مسار تعليمي؟ اضغط هنا

Strongly reshaped organic-metal interfaces: Tetracyanoethylene on Cu(100)

285   0   0.0 ( 0 )
 نشر من قبل St\\'ephane Bedwani
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Stephane Bedwani




اسأل ChatGPT حول البحث

The interaction of the strong electron-acceptor tetracyanoethylene (TCNE) with the Cu(100) surface has been studied with scanning tunneling microscopy experiments and first-principles density functional theory calculations. We compare two different adsorption models with the experimental results and show that the molecular self-assembly is caused by a strong structural modification of the Cu(100) surface rather than the formation of a coordination network by diffusing Cu adatoms. Surface atoms become highly buckled and the chemisorption of TCNE is accompanied by a partial charge-transfer.



قيم البحث

اقرأ أيضاً

258 - A. Mugarza , R. Robles , C. Krull 2012
We present a systematic investigation of molecule-metal interactions for transition-metal phthalocyanines (TMPc, with TM = Fe, Co, Ni, Cu) adsorbed on Ag(100). Scanning tunneling spectroscopy and density functional theory provide insight into the cha rge transfer and hybridization mechanisms of TMPc as a function of increasing occupancy of the 3d metal states. We show that all four TMPc receive approximately one electron from the substrate. Charge transfer occurs from the substrate to the molecules, inducing a charge reorganization in FePc and CoPc, while adding one electron to ligand pi-orbitals in NiPc and CuPc. This has opposite consequences on the molecular magnetic moment: in FePc and CoPc the interaction with the substrate tends to reduce the TM spin, whereas in NiPc and CuPc an additional spin is induced on the aromatic Pc ligand, leaving the TM spin unperturbed. In CuPc, the presence of both TM and ligand spins leads to a triplet ground state arising from intramolecular exchange coupling between d and pi electrons. In FePc and CoPc the magnetic moment of C and N atoms is antiparallel to that of the TM. The different character and symmetry of the frontier orbitals in the TMPc series leads to varying degrees of hybridization and correlation effects, ranging from the mixed-valence (FePc, CoPc) to the Kondo regime (NiPc, CuPc). Coherent coupling between Kondo and inelastic excitations induces finite-bias Kondo resonances involving vibrational transitions in both NiPc and CuPc and triplet-singlet transitions in CuPc.
Adsorption of organic molecules on well-oriented single crystal coinage metal surfaces fundamentally affects the energy distribution curve of ultra-violet photoelectron spectroscopy spectra. New features not present in the spectrum of the pristine me tal can be assigned as interface states having some degree of molecule-substrate hybridization. Here it is shown that interface states having molecular orbital character can easily be identified at low binding energy as isolated features above the featureless substrate sp-plateau. On the other hand much care must be taken in assigning adsorbate-induced features when these lie within the d-band spectral region of the substrate. In fact, features often interpreted as characteristic of the molecule-substrate interaction may actually arise from substrate photoelectrons scattered by the adsorbates. This phenomenon is illustrated through a series of examples of noble-metal single-crystal surfaces covered by monolayers of large pi-conjugated organic molecules.
We present calculations on energy- and time-resolved two-photon photoemission spectra of images states in Cu(100) and Cu(111) surfaces. The surface is modeled by a 1D effective potential and the states are propagated within a real-space, real-time me thod. To obtain the energy resolved spectra we employ a geometrical approach based on a subdivision of space into two regions. We treat electronic inelastic effects by taking into account the scattering rates calculated within a GW scheme. To get further insight into the decaying mechanism we have also studied the effect of the variation of the classical Hartree potential during the excitation. This effect turns out to be small.
We present ab-initio calculations of the magnetic moments and magnetic anisotropy energies of small FeCo clusters of varying composition on top of a Cu(100) substrate. Three different cluster layouts have been considered, namely 2x2, 3x3 and cross-li ke pentamer clusters. The ratio of Co atoms with respect to the total number in a chosen cluster (``concentration) was varied and all possible arrangements of the atomic species were taken into account. Calculations have been performed fully relativistically using the embedded cluster technique in conjunction with the screened Korringa-Kohn-Rostoker method and the magnetocrysergy depend on the position they occupy in a particular cluster and on the type and the number of nearest-neighbors. The MAE for the 2x2 and 3x3 clusters varies with respect to the ``concentration of Co atoms in the same manner as the corresponding monolayer case, whereas the pentamer clusters show a slightly different behavior. Furthermore, for the clusters with an easy axis along a direction in the surface plane, the MAE shows a significant angular dependence.
The barrier formation for metal/organic semiconductor interfaces is analyzed within the Induced Density of Interface States (IDIS) model. Using weak chemisorption theory, we calculate the induced density of states in the organic energy gap and show t hat it is high enough to control the barrier formation. We calculate the Charge Neutrality Levels of several organic molecules (PTCDA, PTCBI and CBP) and the interface Fermi level for their contact with a Au(111) surface. We find an excellent agreement with the experimental evidence and conclude that the barrier formation is due to the charge transfer between the metal and the states induced in the organic energy gap.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا