ﻻ يوجد ملخص باللغة العربية
Smoothed Particle Hydrodynamics (SPH) is a popular numerical technique developed for simulating complex fluid flows. Among its key ingredients is the use of nonlocal integral relaxations to local differentiations. Mathematical analysis of the corresponding nonlocal models on the continuum level can provide further theoretical understanding of SPH. We present, in this part of a series of works on the mathematics of SPH, a nonlocal relaxation to the conventional linear steady state Stokes system for incompressible viscous flows. The nonlocal continuum model is characterized by a smoothing length $delta$ which measures the range of nonlocal interactions. It serves as a bridge between the discrete approximation schemes that involve a nonlocal integral relaxation and the local continuum models. We show that for a class of carefully chosen nonlocal operators, the resulting nonlocal Stokes equation is well-posed and recovers the original Stokes equation in the local limit when $delta$ approaches zero. We also discuss the implications of our finding on the design of numerical methods.
We analyse the performance of twelve different implementations of Smoothed Particle Hydrodynamics (SPH) using seven tests designed to isolate key hydrodynamic elements of cosmological simulations which are known to cause the SPH algorithm problems. I
In this paper, we present a new formulation of smoothed particle hydrodynamics (SPH), which, unlike the standard SPH (SSPH), is well-behaved at the contact discontinuity. The SSPH scheme cannot handle discontinuities in density (e.g. the contact disc
The standard formulation of the smoothed particle hydrodynamics (SPH) assumes that the local density distribution is differentiable. This assumption is used to derive the spatial derivatives of other quantities. However, this assumption breaks down a
The radiation hydrodynamics equations for smoothed particle hydrodynamics are derived by operator splitting the radiation and hydrodynamics terms, including necessary terms for material motion, and discretizing each of the sets of equations separatel
In this paper we design efficient quadrature rules for finite element discretizations of nonlocal diffusion problems with compactly supported kernel functions. Two of the main challenges in nonlocal modeling and simulations are the prohibitive comput