ﻻ يوجد ملخص باللغة العربية
In this paper we design efficient quadrature rules for finite element discretizations of nonlocal diffusion problems with compactly supported kernel functions. Two of the main challenges in nonlocal modeling and simulations are the prohibitive computational cost and the nontrivial implementation of discretization schemes, especially in three-dimensional settings. In this work we circumvent both challenges by introducing a parametrized mollifying function that improves the regularity of the integrand, utilizing an adaptive integration technique, and exploiting parallelization. We first show that the mollified solution converges to the exact one as the mollifying parameter vanishes, then we illustrate the consistency and accuracy of the proposed method on several two- and three-dimensional test cases. Furthermore, we demonstrate the good scaling properties of the parallel implementation of the adaptive algorithm and we compare the proposed method with recently developed techniques for efficient finite element assembly.
Stochastic Galerkin finite element method (SGFEM) provides an efficient alternative to traditional sampling methods for the numerical solution of linear elliptic partial differential equations with parametric or random inputs. However, computing stoc
We consider finite element discretizations of Maxwells equations coupled with a non-local hydrodynamic Drude model that accurately accounts for electron motions in metallic nanostructures. Specifically, we focus on a posteriori error estimation and m
In this article we obtain an optimal best approximation type result for fully discrete approximations of the transient Stokes problem. For the time discretization we use the discontinuous Galerkin method and for the spatial discretization we use stan
In this paper, we develop an adaptive finite element method for the nonlinear steady-state Poisson-Nernst-Planck equations, where the spatial adaptivity for geometrical singularities and boundary layer effects are mainly considered. As a key contribu
We propose a domain decomposition method for the efficient simulation of nonlocal problems. Our approach is based on a multi-domain formulation of a nonlocal diffusion problem where the subdomains share nonlocal interfaces of the size of the nonlocal