ترغب بنشر مسار تعليمي؟ اضغط هنا

Smoothed Particle Hydrodynamics in cosmology: a comparative study of implementations

187   0   0.0 ( 0 )
 نشر من قبل Eric Tittley
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. J. Thacker




اسأل ChatGPT حول البحث

We analyse the performance of twelve different implementations of Smoothed Particle Hydrodynamics (SPH) using seven tests designed to isolate key hydrodynamic elements of cosmological simulations which are known to cause the SPH algorithm problems. In order, we consider a shock tube, spherical adiabatic collapse, cooling flow model, drag, a cosmological simulation, rotating cloud-collapse and disc stability. In the implementations special attention is given to the way in which force symmetry is enforced in the equations of motion. We study in detail how the hydrodynamics are affected by different implementations of the artificial viscosity including those with a shear-correction modification. We present an improved first-order smoothing-length update algorithm that is designed to remove instabilities that are present in the Hernquist and Katz (1989) algorithm. For all tests we find that the artificial viscosity is the most important factor distinguishing the results from the various implementations. The second most important factor is the way force symmetry is achieved in the equation of motion. Most results favour a kernel symmetrization approach. The exact method by which SPH pressure forces are included has comparatively little effect on the results. Combining the equation of motion presented in Thomas and Couchman (1992) with a modification of the Monaghan and Gingold (1983) artificial viscosity leads to an SPH scheme that is both fast and reliable.



قيم البحث

اقرأ أيضاً

75 - Qiang Du , Xiaochuan Tian 2018
Smoothed Particle Hydrodynamics (SPH) is a popular numerical technique developed for simulating complex fluid flows. Among its key ingredients is the use of nonlocal integral relaxations to local differentiations. Mathematical analysis of the corresp onding nonlocal models on the continuum level can provide further theoretical understanding of SPH. We present, in this part of a series of works on the mathematics of SPH, a nonlocal relaxation to the conventional linear steady state Stokes system for incompressible viscous flows. The nonlocal continuum model is characterized by a smoothing length $delta$ which measures the range of nonlocal interactions. It serves as a bridge between the discrete approximation schemes that involve a nonlocal integral relaxation and the local continuum models. We show that for a class of carefully chosen nonlocal operators, the resulting nonlocal Stokes equation is well-posed and recovers the original Stokes equation in the local limit when $delta$ approaches zero. We also discuss the implications of our finding on the design of numerical methods.
In this paper, we present a new formulation of smoothed particle hydrodynamics (SPH), which, unlike the standard SPH (SSPH), is well-behaved at the contact discontinuity. The SSPH scheme cannot handle discontinuities in density (e.g. the contact disc ontinuity and the free surface), because it requires that the density of fluid is positive and continuous everywhere. Thus there is inconsistency in the formulation of the SSPH scheme at discontinuities of the fluid density. To solve this problem, we introduce a new quantity associated with particles and density of that quantity. This density evolves through the usual continuity equation with an additional artificial diffusion term, in order to guarantee the continuity of density. We use this density or pseudo density, instead of the mass density, to formulate our SPH scheme. We call our new method as SPH with smoothed pseudo-density (SPSPH). We show that our new scheme is physically consistent and can handle discontinuities quite well.
The standard formulation of the smoothed particle hydrodynamics (SPH) assumes that the local density distribution is differentiable. This assumption is used to derive the spatial derivatives of other quantities. However, this assumption breaks down a t the contact discontinuity. At the contact discontinuity, the density of the low-density side is overestimated while that of the high-density side is underestimated. As a result, the pressure of the low (high) density side is over (under) estimated. Thus, unphysical repulsive force appears at the contact discontinuity, resulting in the effective surface tension. This tension suppresses fluid instabilities. In this paper, we present a new formulation of SPH, which does not require the differentiability of density. Instead of the mass density, we adopt the internal energy density (pressure), and its arbitrary function, which are smoothed quantities at the contact discontinuity, as the volume element used for the kernel integration. We call this new formulation density independent SPH (DISPH). It handles the contact discontinuity without numerical problems. The results of standard tests such as the shock tube, Kelvin-Helmholtz and Rayleigh-Taylor instabilities, point like explosion, and blob tests are all very favorable to DISPH. We conclude that DISPH solved most of known difficulties of the standard SPH, without introducing additional numerical diffusion or breaking the exact force symmetry or energy conservation. Our new SPH includes the formulation proposed by Ritchie & Thomas (2001) as a special case. Our formulation can be extended to handle a non-ideal gas easily.
The radiation hydrodynamics equations for smoothed particle hydrodynamics are derived by operator splitting the radiation and hydrodynamics terms, including necessary terms for material motion, and discretizing each of the sets of equations separatel y in time and space. The implicit radiative transfer discussed in the first paper of this series is coupled to explicit smoothed particle hydrodynamics. The result is a multi-material meshless radiation hydrodynamics code with arbitrary opacities and equations of state that performs well for problems with significant material motion. The code converges with second-order accuracy in space and first-order accuracy in time to the semianalytic solution for the Lowrie radiative shock problem and has competitive performance compared to a mesh-based radiation hydrodynamics code for a multi-material problem in two dimensions and an ablation problem inspired by inertial confinement fusion in two and three dimensions.
In this paper we investigate whether Smoothed Particle Hydrodynamics (SPH), equipped with artificial conductivity, is able to capture the physics of density/energy discontinuities in the case of the so-called shearing layers test, a test for examinin g Kelvin-Helmholtz (KH) instabilities. We can trace back each failure of SPH to show KH rolls to two causes: i) shock waves travelling in the simulation box and ii) particle clumping, or more generally, particle noise. The probable cause of shock waves is the Local Mixing Instability (LMI), previously identified in the literature. Particle noise on the other hand is a problem because it introduces a large error in the SPH momentum equation. We also investigate the role of artificial conductivity (AC). Including AC is necessary for the long-term behavior of the simulation (e.g. to get $lambda=1/2, 1$ KH rolls). In sensitive hydrodynamical simulations great care is however needed in selecting the AC signal velocity, with the default formulation leading to too much energy diffusion. We present new signal velocities that lead to less diffusion. The effects of the shock waves and of particle disorder become less important as the time-scale of the physical problem (for the shearing layers problem: lower density contrast and higher Mach numbers) decreases. At the resolution of current galaxy formation simulations mixing is probably not important. However, mixing could become crucial for next-generation simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا