ﻻ يوجد ملخص باللغة العربية
We analyse the performance of twelve different implementations of Smoothed Particle Hydrodynamics (SPH) using seven tests designed to isolate key hydrodynamic elements of cosmological simulations which are known to cause the SPH algorithm problems. In order, we consider a shock tube, spherical adiabatic collapse, cooling flow model, drag, a cosmological simulation, rotating cloud-collapse and disc stability. In the implementations special attention is given to the way in which force symmetry is enforced in the equations of motion. We study in detail how the hydrodynamics are affected by different implementations of the artificial viscosity including those with a shear-correction modification. We present an improved first-order smoothing-length update algorithm that is designed to remove instabilities that are present in the Hernquist and Katz (1989) algorithm. For all tests we find that the artificial viscosity is the most important factor distinguishing the results from the various implementations. The second most important factor is the way force symmetry is achieved in the equation of motion. Most results favour a kernel symmetrization approach. The exact method by which SPH pressure forces are included has comparatively little effect on the results. Combining the equation of motion presented in Thomas and Couchman (1992) with a modification of the Monaghan and Gingold (1983) artificial viscosity leads to an SPH scheme that is both fast and reliable.
Smoothed Particle Hydrodynamics (SPH) is a popular numerical technique developed for simulating complex fluid flows. Among its key ingredients is the use of nonlocal integral relaxations to local differentiations. Mathematical analysis of the corresp
In this paper, we present a new formulation of smoothed particle hydrodynamics (SPH), which, unlike the standard SPH (SSPH), is well-behaved at the contact discontinuity. The SSPH scheme cannot handle discontinuities in density (e.g. the contact disc
The standard formulation of the smoothed particle hydrodynamics (SPH) assumes that the local density distribution is differentiable. This assumption is used to derive the spatial derivatives of other quantities. However, this assumption breaks down a
The radiation hydrodynamics equations for smoothed particle hydrodynamics are derived by operator splitting the radiation and hydrodynamics terms, including necessary terms for material motion, and discretizing each of the sets of equations separatel
In this paper we investigate whether Smoothed Particle Hydrodynamics (SPH), equipped with artificial conductivity, is able to capture the physics of density/energy discontinuities in the case of the so-called shearing layers test, a test for examinin