ﻻ يوجد ملخص باللغة العربية
We investigate the transport problem that a spinful matter wave is incident on a strong localized spin-orbit-coupled Bose-Einstein condensate in optical lattices, where the localization is admitted by atom interaction only existing at one particular site, and the spin-orbit coupling arouse spatial rotation of the spin texture. We find that tuning the spin orientation of the localized Bose-Einstein condensate can lead to spin-nonreciprocal / spin-reciprocal transport, meaning the transport properties are dependent on / independent of the spin orientation of incident waves. In the former case, we obtain the conditions to achieve transparency, beam-splitting, and blockade of the incident wave with a given spin orientation, and furthermore the ones to perfectly isolate incident waves of different spin orientation, while in the latter, we obtain the condition to maximize the conversion of different spin states. The result may be useful to develop a novel spinful matter wave valve that integrates spin switcher, beam-splitter, isolator, and converter. The method can also be applied to other real systems, e.g., realizing perfect isolation of spin states in magnetism, which is otherwise rather difficult.
Quantum computing hardware has received world-wide attention and made considerable progress recently. YIG thin film have spin wave (magnon) modes with low dissipation and reliable control for quantum information processing. However, the coherent coup
Quantum thermodynamics is emerging both as a topic of fundamental research and as means to understand and potentially improve the performance of quantum devices. A prominent platform for achieving the necessary manipulation of quantum states is super
We present the first realisation of a solitonic atom interferometer. A Bose-Einstein condensate of $1times10^4$ atoms of rubidium-85 is loaded into a horizontal optical waveguide. Through the use of a Feshbach resonance, the $s$-wave scattering lengt
Starting from an elementary model and refining it to take into account more realistic effects, we discuss the limitations and advantages of matter-wave interferometry in different configurations. We focus on the possibility to apply this approach to
We consider the extension of optical meta-materials to matter waves. We show that the generic property of pulsed comoving magnetic fields allows us to fashion the wave-number dependence of the atomic phase shift. It can be used to produce a transient