ﻻ يوجد ملخص باللغة العربية
Quantum thermodynamics is emerging both as a topic of fundamental research and as means to understand and potentially improve the performance of quantum devices. A prominent platform for achieving the necessary manipulation of quantum states is superconducting circuit quantum electrodynamics (QED). In this platform, thermalization of a quantum system can be achieved by interfacing the circuit QED subsystem with a thermal reservoir of appropriate Hilbert dimensionality. Here we study heat transport through an assembly consisting of a superconducting qubit capacitively coupled between two nominally identical coplanar waveguide resonators, each equipped with a heat reservoir in the form of a normal-metal mesoscopic resistor termination. We report the observation of tunable photonic heat transport through the resonator-qubit-resonator assembly, showing that the reservoir-to-reservoir heat flux depends on the interplay between the qubit-resonator and the resonator-reservoir couplings, yielding qualitatively dissimilar results in different coupling regimes. Our quantum heat valve is relevant for the realisation of quantum heat engines and refrigerators, that can be obtained, for example, by exploiting the time-domain dynamics and coherence of driven superconducting qubits. This effort would ultimately bridge the gap between the fields of quantum information and thermodynamics of mesoscopic systems.
We discuss the heat transfer by photons between two metals coupled by a linear element with a reactive impedance. Using a simple circuit approach, we calculate the spectral power transmitted from one resistor to the other and find that it is determin
Superconducting microwave circuits show great potential for practical quantum technological applications such as quantum information processing. However, fast and on-demand initialization of the quantum degrees of freedom in these devices remains a c
We study heat transport in quantum spin systems analytically and numerically. First, we demonstrate that heat current through a two-level quantum spin system can be modulated from zero to a finite value by tuning a magnetic field. Second, we show tha
A quantum dot driven by two ac gate potentials oscillating with a phase lag may be regarded as a quantum engine, where energy is transported and dissipated in the form of heat. In this chapter we introduce a microscopic model for a quantum pump and a
In this Colloquium recent advances in the field of quantum heat transport are reviewed. This topic has been investigated theoretically for several decades, but only during the past twenty years have experiments on various mesoscopic systems become fe