ترغب بنشر مسار تعليمي؟ اضغط هنا

Negative-index media for matter-wave optics

132   0   0.0 ( 0 )
 نشر من قبل Gabriel Dutier
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the extension of optical meta-materials to matter waves. We show that the generic property of pulsed comoving magnetic fields allows us to fashion the wave-number dependence of the atomic phase shift. It can be used to produce a transient negative group velocity of an atomic wave packet, which results into a negative refraction of the matter wave. Application to slow metastable argon atoms Ar*(3P2) shows that the device is able to operate either as an efficient beam splitter or an atomic meta-lens. Implications of meta-media in atom optics are considered.



قيم البحث

اقرأ أيضاً

In recent years a very exciting and intense activity has been devoted to the understanding and construction of materials that enjoy exotic optical properties, such as a negative refractive index. Motivated by these experimental and theoretical develo pments, we use the string-inspired idea of holography to study the electromagnetic response of a certain class of media: strongly coupled relativistic systems that admit a dual gravitational description. Our results indicate that this type of media generally have a negative refractive index. Moreover we observe that a negative refractive index could be a common feature of relativistic hydrodynamic systems at low frequencies.
73 - JB Pendry , D.R. Smith 2002
In a recent Physical Review Letter [1] Valanju Walser and Valanju (VWV) called into question the basis of work on the so called negative index media (NIM). See for example [2,3]. The key point at issue is, `what is the group velocity of a wave in NIM?
Evanescent matter-waves produced by an atom wave packet incident onto a repulsive barrier edge can be back-refracted and reconstructed by the application of negative-index comoving potential pulses. One shows that those collapses and revivals of evan escent matter waves give rise to surface matter waves and should be observable via atom reflection echoes issued from the barrier interface. This property, together with the property of inducing negative refraction, makes such potentials the matter-wave counterpart of negative-index materials in light optics.
184 - James Q. Quach , Chun-Hsu Su , 2013
Cavity array metamaterials (CAMs), composed of optical microcavities in a lattice coupled via tight-binding interactions, represent a novel architecture for engineering metamaterials. Since the size of the CAMs constituent elements are commensurate w ith the operating wavelength of the device, it cannot directly utilise classical transformation optics in the same way as traditional metamaterials. By directly transforming the internal geometry of the system, and locally tuning the permittivity between cavities, we provide an alternative framework suitable for tight-binding implementations of metamaterials. We develop a CAM-based cloak as the case study.
Optical detection of single defect centers in the solid state is a key element of novel quantum technologies. This includes the generation of single photons and quantum information processing. Unfortunately the brightness of such atomic emitters is l imited. Therefore we experimentally demonstrate a novel and simple approach that uses off-the-shelf optical elements. The key component is a solid immersion lens made of diamond, the host material for single color centers. We improve the excitation and detection of single emitters by one order of magnitude, as predicted by theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا