ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural language representations predict outcomes of scientific research

129   0   0.0 ( 0 )
 نشر من قبل James Bagrow
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Many research fields codify their findings in standard formats, often by reporting correlations between quantities of interest. But the space of all testable correlates is far larger than scientific resources can currently address, so the ability to accurately predict correlations would be useful to plan research and allocate resources. Using a dataset of approximately 170,000 correlational findings extracted from leading social science journals, we show that a trained neural network can accurately predict the reported correlations using only the text descriptions of the correlates. Accurate predictive models such as these can guide scientists towards promising untested correlates, better quantify the information gained from new findings, and has implications for moving artificial intelligence systems from predicting structures to predicting relationships in the real world.



قيم البحث

اقرأ أيضاً

Quantifying differences in terminologies from various academic domains has been a longstanding problem yet to be solved. We propose a computational approach for analyzing linguistic variation among scientific research fields by capturing the semantic change of terms based on a neural language model. The model is trained on a large collection of literature in five computer science research fields, for which we obtain field-specific vector representations for key terms, and global vector representations for other words. Several quantitative approaches are introduced to identify the terms whose semantics have drastically changed, or remain unchanged across different research fields. We also propose a metric to quantify the overall linguistic variation of research fields. After quantitative evaluation on human annotated data and qualitative comparison with other methods, we show that our model can improve cross-disciplinary data collaboration by identifying terms that potentially induce confusion during interdisciplinary studies.
Analysis methods which enable us to better understand the representations and functioning of neural models of language are increasingly needed as deep learning becomes the dominant approach in NLP. Here we present two methods based on Representationa l Similarity Analysis (RSA) and Tree Kernels (TK) which allow us to directly quantify how strongly the information encoded in neural activation patterns corresponds to information represented by symbolic structures such as syntax trees. We first validate our methods on the case of a simple synthetic language for arithmetic expressions with clearly defined syntax and semantics, and show that they exhibit the expected pattern of results. We then apply our methods to correlate neural representations of English sentences with their constituency parse trees.
Genomics are rapidly transforming medical practice and basic biomedical research, providing insights into disease mechanisms and improving therapeutic strategies, particularly in cancer. The ability to predict the future course of a patients disease from high-dimensional genomic profiling will be essential in realizing the promise of genomic medicine, but presents significant challenges for state-of-the-art survival analysis methods. In this abstract we present an investigation in learning genomic representations with neural networks to predict patient survival in cancer. We demonstrate the advantages of this approach over existing survival analysis methods using brain tumor data.
The distributed and continuous representations used by neural networks are at odds with representations employed in linguistics, which are typically symbolic. Vector quantization has been proposed as a way to induce discrete neural representations th at are closer in nature to their linguistic counterparts. However, it is not clear which metrics are the best-suited to analyze such discrete representations. We compare the merits of four commonly used metrics in the context of weakly supervised models of spoken language. We compare the results they show when applied to two different models, while systematically studying the effect of the placement and size of the discretization layer. We find that different evaluation regimes can give inconsistent results. While we can attribute them to the properties of the different metrics in most cases, one point of concern remains: the use of minimal pairs of phoneme triples as stimuli disadvantages larger discrete unit inventories, unlike metrics applied to complete utterances. Furthermore, while in general vector quantization induces representations that correlate with units posited in linguistics, the strength of this correlation is only moderate.
Large language models (LM) generate remarkably fluent text and can be efficiently adapted across NLP tasks. Measuring and guaranteeing the quality of generated text in terms of safety is imperative for deploying LMs in the real world; to this end, pr ior work often relies on automatic evaluation of LM toxicity. We critically discuss this approach, evaluate several toxicity mitigation strategies with respect to both automatic and human evaluation, and analyze consequences of toxicity mitigation in terms of model bias and LM quality. We demonstrate that while basic intervention strategies can effectively optimize previously established automatic metrics on the RealToxicityPrompts dataset, this comes at the cost of reduced LM coverage for both texts about, and dialects of, marginalized groups. Additionally, we find that human raters often disagree with high automatic toxicity scores after strong toxicity reduction interventions -- highlighting further the nuances involved in careful evaluation of LM toxicity.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا