ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlating neural and symbolic representations of language

276   0   0.0 ( 0 )
 نشر من قبل Grzegorz Chrupa{\\l}a
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Analysis methods which enable us to better understand the representations and functioning of neural models of language are increasingly needed as deep learning becomes the dominant approach in NLP. Here we present two methods based on Representational Similarity Analysis (RSA) and Tree Kernels (TK) which allow us to directly quantify how strongly the information encoded in neural activation patterns corresponds to information represented by symbolic structures such as syntax trees. We first validate our methods on the case of a simple synthetic language for arithmetic expressions with clearly defined syntax and semantics, and show that they exhibit the expected pattern of results. We then apply our methods to correlate neural representations of English sentences with their constituency parse trees.



قيم البحث

اقرأ أيضاً

The distributed and continuous representations used by neural networks are at odds with representations employed in linguistics, which are typically symbolic. Vector quantization has been proposed as a way to induce discrete neural representations th at are closer in nature to their linguistic counterparts. However, it is not clear which metrics are the best-suited to analyze such discrete representations. We compare the merits of four commonly used metrics in the context of weakly supervised models of spoken language. We compare the results they show when applied to two different models, while systematically studying the effect of the placement and size of the discretization layer. We find that different evaluation regimes can give inconsistent results. While we can attribute them to the properties of the different metrics in most cases, one point of concern remains: the use of minimal pairs of phoneme triples as stimuli disadvantages larger discrete unit inventories, unlike metrics applied to complete utterances. Furthermore, while in general vector quantization induces representations that correlate with units posited in linguistics, the strength of this correlation is only moderate.
106 - Yunchuan Chen , Lili Mou , Yan Xu 2016
Neural networks are among the state-of-the-art techniques for language modeling. Existing neural language models typically map discrete words to distributed, dense vector representations. After information processing of the preceding context words by hidden layers, an output layer estimates the probability of the next word. Such approaches are time- and memory-intensive because of the large numbers of parameters for word embeddings and the output layer. In this paper, we propose to compress neural language models by sparse word representations. In the experiments, the number of parameters in our model increases very slowly with the growth of the vocabulary size, which is almost imperceptible. Moreover, our approach not only reduces the parameter space to a large extent, but also improves the performance in terms of the perplexity measure.
We study how language on social media is linked to diseases such as atherosclerotic heart disease (AHD), diabetes and various types of cancer. Our proposed model leverages state-of-the-art sentence embeddings, followed by a regression model and clust ering, without the need of additional labelled data. It allows to predict community-level medical outcomes from language, and thereby potentially translate these to the individual level. The method is applicable to a wide range of target variables and allows us to discover known and potentially novel correlations of medical outcomes with life-style aspects and other socioeconomic risk factors.
Many research fields codify their findings in standard formats, often by reporting correlations between quantities of interest. But the space of all testable correlates is far larger than scientific resources can currently address, so the ability to accurately predict correlations would be useful to plan research and allocate resources. Using a dataset of approximately 170,000 correlational findings extracted from leading social science journals, we show that a trained neural network can accurately predict the reported correlations using only the text descriptions of the correlates. Accurate predictive models such as these can guide scientists towards promising untested correlates, better quantify the information gained from new findings, and has implications for moving artificial intelligence systems from predicting structures to predicting relationships in the real world.
Contextualized representations based on neural language models have furthered the state of the art in various NLP tasks. Despite its great success, the nature of such representations remains a mystery. In this paper, we present an empirical property of these representations -- average approximates first principal component. Specifically, experiments show that the average of these representations shares almost the same direction as the first principal component of the matrix whose columns are these representations. We believe this explains why the average representation is always a simple yet strong baseline. Our further examinations show that this property also holds in more challenging scenarios, for example, when the representations are from a model right after its random initialization. Therefore, we conjecture that this property is intrinsic to the distribution of representations and not necessarily related to the input structure. We realize that these representations empirically follow a normal distribution for each dimension, and by assuming this is true, we demonstrate that the empirical property can be in fact derived mathematically.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا