ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantification and Analysis of Scientific Language Variation Across Research Fields

63   0   0.0 ( 0 )
 نشر من قبل Pei Zhou
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantifying differences in terminologies from various academic domains has been a longstanding problem yet to be solved. We propose a computational approach for analyzing linguistic variation among scientific research fields by capturing the semantic change of terms based on a neural language model. The model is trained on a large collection of literature in five computer science research fields, for which we obtain field-specific vector representations for key terms, and global vector representations for other words. Several quantitative approaches are introduced to identify the terms whose semantics have drastically changed, or remain unchanged across different research fields. We also propose a metric to quantify the overall linguistic variation of research fields. After quantitative evaluation on human annotated data and qualitative comparison with other methods, we show that our model can improve cross-disciplinary data collaboration by identifying terms that potentially induce confusion during interdisciplinary studies.



قيم البحث

اقرأ أيضاً

Many research fields codify their findings in standard formats, often by reporting correlations between quantities of interest. But the space of all testable correlates is far larger than scientific resources can currently address, so the ability to accurately predict correlations would be useful to plan research and allocate resources. Using a dataset of approximately 170,000 correlational findings extracted from leading social science journals, we show that a trained neural network can accurately predict the reported correlations using only the text descriptions of the correlates. Accurate predictive models such as these can guide scientists towards promising untested correlates, better quantify the information gained from new findings, and has implications for moving artificial intelligence systems from predicting structures to predicting relationships in the real world.
Biomedical knowledge graphs (KGs) hold rich information on entities such as diseases, drugs, and genes. Predicting missing links in these graphs can boost many important applications, such as drug design and repurposing. Recent work has shown that ge neral-domain language models (LMs) can serve as soft KGs, and that they can be fine-tuned for the task of KG completion. In this work, we study scientific LMs for KG completion, exploring whether we can tap into their latent knowledge to enhance biomedical link prediction. We evaluate several domain-specific LMs, fine-tuning them on datasets centered on drugs and diseases that we represent as KGs and enrich with textual entity descriptions. We integrate the LM-based models with KG embedding models, using a router method that learns to assign each input example to either type of model and provides a substantial boost in performance. Finally, we demonstrate the advantage of LM models in the inductive setting with novel scientific entities. Our datasets and code are made publicly available.
Analysing research trends and predicting their impact on academia and industry is crucial to gain a deeper understanding of the advances in a research field and to inform critical decisions about research funding and technology adoption. In the last years, we saw the emergence of several publicly-available and large-scale Scientific Knowledge Graphs fostering the development of many data-driven approaches for performing quantitative analyses of research trends. This chapter presents an innovative framework for detecting, analysing, and forecasting research topics based on a large-scale knowledge graph characterising research articles according to the research topics from the Computer Science Ontology. We discuss the advantages of a solution based on a formal representation of topics and describe how it was applied to produce bibliometric studies and innovative tools for analysing and predicting research dynamics.
Hate speech and toxic comments are a common concern of social media platform users. Although these comments are, fortunately, the minority in these platforms, they are still capable of causing harm. Therefore, identifying these comments is an importa nt task for studying and preventing the proliferation of toxicity in social media. Previous work in automatically detecting toxic comments focus mainly in English, with very few work in languages like Brazilian Portuguese. In this paper, we propose a new large-scale dataset for Brazilian Portuguese with tweets annotated as either toxic or non-toxic or in different types of toxicity. We present our dataset collection and annotation process, where we aimed to select candidates covering multiple demographic groups. State-of-the-art BERT models were able to achieve 76% macro-F1 score using monolingual data in the binary case. We also show that large-scale monolingual data is still needed to create more accurate models, despite recent advances in multilingual approaches. An error analysis and experiments with multi-label classification show the difficulty of classifying certain types of toxic comments that appear less frequently in our data and highlights the need to develop models that are aware of different categories of toxicity.
This paper presents two approaches to quantifying and visualizing variation in datasets of trees. The first approach localizes subtrees in which significant population differences are found through hypothesis testing and sparse classifiers on subtree features. The second approach visualizes the global metric structure of datasets through low-distortion embedding into hyperbolic planes in the style of multidimensional scaling. A case study is made on a dataset of airway trees in relation to Chronic Obstructive Pulmonary Disease.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا