ﻻ يوجد ملخص باللغة العربية
In recent years, visual comfort assessment (VCA) for 3D/stereoscopic content has aroused extensive attention. However, much less work has been done on the perceptual evaluation of stereoscopic image retargeting. In this paper, we first build a Stereoscopic Image Retargeting Database (SIRD), which contains source images and retargeted images produced by four typical stereoscopic retargeting methods. Then, the subjective experiment is conducted to assess four aspects of visual distortion, i.e. visual comfort, image quality, depth quality and the overall quality. Furthermore, we propose a Visual Comfort Assessment metric for Stereoscopic Image Retargeting (VCA-SIR). Based on the characteristics of stereoscopic retargeted images, the proposed model introduces novel features like disparity range, boundary disparity as well as disparity intensity distribution into the assessment model. Experimental results demonstrate that VCA-SIR can achieve high consistency with subjective perception.
Visual comfort is a quite important factor in 3D media service. Few research efforts have been carried out in this area especially in case of 3D content retargeting which may introduce more complicated visual distortions. In this paper, we propose a
As it is said by Van Gogh, great things are done by a series of small things brought together. Aesthetic experience arises from the aggregation of underlying visual components. However, most existing deep image aesthetic assessment (IAA) methods over
A good distortion representation is crucial for the success of deep blind image quality assessment (BIQA). However, most previous methods do not effectively model the relationship between distortions or the distribution of samples with the same disto
Existing blind image quality assessment (BIQA) methods are mostly designed in a disposable way and cannot evolve with unseen distortions adaptively, which greatly limits the deployment and application of BIQA models in real-world scenarios. To addres
Nowadays, most existing blind image quality assessment (BIQA) models 1) are developed for synthetically-distorted images and often generalize poorly to authentic ones; 2) heavily rely on human ratings, which are prohibitively labor-expensive to colle