ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding Spin Configuration in the Geometrically Frustrated Magnet TbB$_{4}$: a Resonant Soft X-ray Scattering Study

64   0   0.0 ( 0 )
 نشر من قبل Hoyoung Jang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The frustrated magnet has been regarded as a system that could be a promising host material for the quantum spin liquid (QSL). However, it is difficult to determine the spin configuration and the corresponding mechanism in this system, because of its geometrical frustration (i.e., crystal structure and symmetry). Herein, we systematically investigate one of the geometrically frustrated magnets, the TbB$_{4}$ compound. Using resonant soft x-ray scattering (RSXS), we explored its spin configuration, as well as Tbs quadrupole. Comprehensive evaluations of the temperature and photon energy / polarization dependences of the RSXS signals reveal the mechanism of spin reorientation upon cooling down, which is the sophisticated interplay between the Tb spin and the crystal symmetry rather than its orbit (quadrupole). Our results and their implications would further shed a light on the search for possible realization of QSL.



قيم البحث

اقرأ أيضاً

Magnetic spiral structures can exhibit ferroelectric moments as recently demonstrated in various multiferroic materials. In such cases the helicity of the magnetic spiral is directly correlated with the direction of the ferroelectric moment and measu rement of the helicity of magnetic structures is of current interest. Soft x-ray resonant diffraction is particularly advantageous because it combines element selectivity with a large magnetic cross-section. We calculate the polarization dependence of the resonant magnetic x-ray cross-section (electric dipole transition) for the basal plane magnetic spiral in hexaferrite Ba0.8Sr1.2Zn2Fe12O22 and deduce its domain population using circular polarized incident radiation. We demonstrate there is a direct correlation between the diffracted radiation and the helicity of the magnetic spiral.
152 - Hang Li , Bei Ding , Jie Chen 2019
We report on the observation of a large topological Hall effect (THE) over a wide temperature region in a geometrically frustrated Fe3Sn2 magnet with a kagome-bilayer structure. We found that the magnitude of the THE resistivity increases with temper ature and reaches -0.875 {mu}{Omega}.cm at 380 K. Moreover, the critical magnetic fields with the change of THE are consistent with the magnetic structure transformation, which indicates that the real-space fictitious magnetic field is proportional to the formation of magnetic skyrmions in Fe3Sn2. The results strongly suggest that the large THE originates from the topological magnetic spin textures and may open up further research opportunities in exploring emergent phenomena in kagome materials.
180 - K. Tomiyasu , H. Suzuki , M. Toki 2008
We measured two magnetic modes with finite and discrete energies in an antiferromagnetic ordered phase of a geometrically frustrated magnet MgCr2O4 by single-crystal inelastic neutron scattering, and clarified the spatial spin correlations of the two levels: one is an antiferromagnetic hexamer and the other is an antiferromagnetic heptamer. Since these correlation types are emblematic of quasielastic scattering with geometric frustration, our results indicate instantaneous suppression of lattice distortion in an ordered phase by spin-lattice coupling, probably also supported by orbital and charge. The common features in the two levels, intermolecular independence and discreteness of energy, suggest that the spin molecules are interpreted as quasiparticles (elementary excitations with energy quantum) of highly frustrated spins, in analogy with the Fermi liquid approximation.
Competing magnetic interactions in geometrically frustrated magnets give rise to new forms of correlated matter, such as spin liquids and spin ices. Characterizing the magnetic structure of these states has been difficult due to the absence of long-r ange order. Here, we demonstrate that the spin Seebeck effect (SSE) is a sensitive probe of magnetic short-range order (SRO) in geometrically frustrated magnets. In low temperature (2 - 5 K) SSE measurements on a model frustrated magnet mathrm{Gd_{3}Ga_{5}O_{12}}, we observe modulations in the spin current on top of a smooth background. By comparing to existing neutron diffraction data, we find that these modulations arise from field-induced magnetic ordering that is short-range in nature. The observed SRO is anisotropic with the direction of applied field, which is verified by theoretical calculation.
Static charge-density wave (CDW) and spin-density wave (SDW) order has been convincingly observed in La-based cuprates for some time. However, more recently it has been suggested by quantum oscillation, transport and thermodynamic measurements that d ensity wave order is generic to underdoped cuprates and plays a significant role in YBa_2Cu_3O_{6+delta} (YBCO). We use resonant soft x-ray scattering at the Cu L and O K edges to search for evidence of density wave order in Ortho-II and Ortho-VIII oxygen-ordered YBCO. We report a null result -- no evidence for static CDW order -- in both Ortho-II and Ortho-VIII ordered YBCO. While this does not rule out static CDW order in the CuO_2 planes of YBCO, these measurements place limits on the parameter space (temperature, magnetic field, scattering vector) in which static CDW order may exist. In addition, we present a detailed analysis of the energy and polarization dependence of the Ortho-II superstructure Bragg reflection [0.5 0 0] at the Cu L edge. The intensity of this peak, which is due to the valence modulations of Cu in the chain layer, is compared with calculations using atomic scattering form factors deduced from x-ray absorption measurements. The calculated energy and polarization dependence of the scattering intensity is shown to agree very well with the measurement, validating the approach and providing a framework for analyzing future resonant soft x-ray scattering measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا